共查询到20条相似文献,搜索用时 15 毫秒
1.
Primož Pirih Bodo D. Wilts Doekele G. Stavenga 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2011,197(10):987-997
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling. 相似文献
2.
Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems 总被引:1,自引:0,他引:1
Helmut Hillebrand Elizabeth T. Borer Matthew E. S. Bracken Bradley J. Cardinale Just Cebrian Elsa E. Cleland James J. Elser Daniel S. Gruner W. Stanley Harpole Jacqueline T. Ngai Stuart Sandin Eric W. Seabloom Jonathan B. Shurin Jennifer E. Smith Melinda D. Smith 《Ecology letters》2009,12(6):516-527
Plant-herbivore interactions mediate the trophic structure of ecosystems. We use a comprehensive data set extracted from the literature to test the relative explanatory power of two contrasting bodies of ecological theory, the metabolic theory of ecology (MTE) and ecological stoichiometry (ES), for per-capita and population-level rates of herbivory across ecosystems. We found that ambient temperature and herbivore body size (MTE) as well as stoichiometric mismatch (ES) both constrained herbivory, but at different scales of biological organization. Herbivore body size, which varied over 11 orders of magnitude, was the primary factor explaining variation in per-capita rates of herbivory. Stoichiometric mismatch explained more variation in population-level herbivory rates and also in per-capita rates when we examined data from within functionally similar trophic groups (e.g. zooplankton). Thus, predictions from metabolic and stoichiometric theories offer complementary explanations for patterns of herbivory that operate at different scales of biological organization. 相似文献
3.
Plant species diversity and grazing in the Scandinavian mountains - patterns and processes at different spatial scales 总被引:8,自引:0,他引:8
There is a long tradition of grazing by semi‐domestic reindeer and sheep in alpine and sub‐alpine Scandinavian habitats, but present management regimes are questioned from a conservation point of view. In this review we discuss plant diversity patterns in the Scandinavian mountains in a global, regional and local perspective. The main objective was to identify processes that influence diversity at different spatial scales with a particular focus on grazing. In a global perspective the species pool of the Scandinavian mountains is limited. partly reflecting the general latitudinal decline of species but also historical and ecological factors operating after the latest glaciation. At the local scale, both productivity and disturbance are primary factors structuring diversity, but abiotic factors such as soil pH, snow distribution and temperature are also important. Although evidence is scarce, grazing favours local species richness in productive habitats, whereas species richness decreases with grazing when productivity is low. Regional patterns of plant diversity is set by, 1) the species pool. 2) the heterogeneity and fragmentation of communities, and 3) local diversity of each plant community. We suggest that local shifts in community composition depend both on the local grazing frequency and the return‐time of the plant community after a grazing session. In addition, an increasing number of grazing‐modified local patches homogenises the vegetation and is likely to reduce the regional plant diversity. The time scale of local shifts in community composition depends on plant colonisation and persistence, From a mechanistic point of view, diversity patterns at a regional scale also depend on the regional dynamics of single species. Colonisation is usually a slow and irregular process in alpine environments, whereas the capacity for extended local persistence is generally high. Although the poor knowledge of plant regional dynamics restricts our understanding of how grazing influences plant diversity, we conclude that grazing is a key process for maintaining biodiversity in the Scandinavian mountains. 相似文献
4.
《Fungal Ecology》2014
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation. 相似文献
5.
6.
Golubski AJ Gross KL Mittelbach GG 《Proceedings. Biological sciences / The Royal Society》2008,275(1645):1897-1906
Clonal plants that are physiologically integrated might perceive and interact with their environment at a coarser resolution than smaller, non-clonal competitors. We develop models to explore the implications of such scale asymmetries when species compete for multiple depletable resources that are heterogeneously distributed in space across two patches. Species are either 'non-integrators', whose growth in each patch depends on resource levels in that patch alone, or 'integrators', whose growth is equal between patches and depends on average resource levels across patches. Integration carried both benefits and costs. It tended to be advantageous in poorer patches, where the integrators drew resources down further than the non-integrators (more easily excluding competitors) and might persist by using resources from richer adjacent patches. Integration tended to be disadvantageous in richer patches, where integrators did not draw resources down as far (creating an opportunity for competitors) and could be excluded due to the cost of supporting growth in poorer adjacent patches. Complementarity between patches (each rich in a separate resource) favoured integrators. Integration created new opportunities for local coexistence, and for delayed susceptibility of patches to invasion, but eliminated some opportunities for regional coexistence. Implications for the interpretations of species' zero net growth isoclines and Rs are also discussed. 相似文献
7.
Elena N. Surkova Natalia P. Korallo-Vinarskaya Maxim V. Vinarski Michal Stanko Elizabeth M. Warburton Luther van der Mescht Irina S. Khokhlova Boris R. Krasnov 《International journal for parasitology》2018,48(12):969-978
The aims of this study were to determine whether sexual size dimorphism in fleas and gamasid mites (i) conforms to Rensch’s rule (allometry of sexual size dimorphism) and (ii) covaries with sex ratio in infrapopulations (conspecific parasites harboured by an individual host), xenopopulations (conspecific parasites harboured by a population of a given host species in a locality) and suprapopulations (conspecific parasites harboured by an entire host community in a locality). Rensch’s rule in sexual size dimorphism was tested across 150 flea and 55 mite species, whereas covariation between sexual size dimorphism and sex ratio was studied using data on ectoparasites collected from small mammalian hosts in Slovakia and western Siberia. For fleas, we controlled for the confounding effect of phylogeny. The slope of the linear regression of female size on male size was significantly smaller than 1 in fleas, but did not differ from 1 in mites. The proportion of males in flea infrapopulations significantly increased with an increase in the female-to-male body size ratio. The same was true for obligatory haematophagous mites. No relationship between sex ratio and sexual size dimorphism was found for xenopopulations of either taxon or for mite suprapopulations. However, when controlling for the confounding effect of phylogeny, a significant negative correlation between sex ratio and sexual size dimorphism was revealed for flea suprapopulations. We conclude that (i) some macroecological patterns differ between ectoparasite taxa exploiting the same hosts (allometry in sexual size dimorphism), whereas other patterns are similar (sexual size dimorphism-sex ratio relationship in infrapopulations), and (ii) some patterns are scale-dependent and may demonstrate the opposite trends in parasite populations at different hierarchical levels. 相似文献
8.
ATR signalling: more than meeting at the fork 总被引:1,自引:0,他引:1
Preservation of genome integrity via the DNA-damage response is critical to prevent disease. ATR (ataxia telangiectasia mutated- and Rad3-related) is essential for life and functions as a master regulator of the DNA-damage response, especially during DNA replication. ATR controls and co-ordinates DNA replication origin firing, replication fork stability, cell cycle checkpoints and DNA repair. Since its identification 15 years ago, a model of ATR activation and signalling has emerged that involves localization to sites of DNA damage and activation through protein-protein interactions. Recent research has added an increasingly detailed understanding of the canonical ATR pathway, and an appreciation that the canonical model does not fully capture the complexity of ATR regulation. In the present article, we review the ATR signalling process, focusing on mechanistic findings garnered from the identification of new ATR-interacting proteins and substrates. We discuss how to incorporate these new insights into a model of ATR regulation and point out the significant gaps in our understanding of this essential genome-maintenance pathway. 相似文献
9.
Background and Aims Clonal plants can plastically modify their traits in response to competition, but little is known regarding the spatio-temporal scale at which a competitive neighbourhood determines the variability in species traits. This study tests the hypothesis that the local neighbourhood can be expected to influence the processes that are involved in competition tolerance and avoidance, and that this effect depends on organ lifespan.Methods Fragments of the rhizomatous Elytrigia repens (Poaceae) were sampled in 2012 in experimental plant communities that varied in species identity and abundance. These communities had been cultivated since 2009 in mesocosms in a common garden. Fragment performance, shoot and clonal traits were measured, and the effects of past and present local neighbourhoods of five different radius sizes (5–25 cm) were examined. Past and present local neighbourhood compositions were assessed in 2011 and 2012, respectively.Key Results Most of the measured traits of E. repens responded to the local neighbourhood (5–10 cm radius), with an additional effect of the larger neighbourhood (20–25 cm radius) on ramet height, leaf dry matter content, maximal internode length and specific rhizome mass. Contrary to the expectation of the hypothesis, the temporal influence was not due to the organ lifespan. Indeed, five of the eight traits studied responded to both the past and present neighbourhoods. With the exception of specific rhizome mass, all trait responses were explained by the abundance of specific species.Conclusions This study demonstrates that the traits of a single clonal individual can respond to different competitive environments in space and time. The results thus contribute to the understanding of competition mechanisms. 相似文献
10.
The article is presenting the general analysis of the systems approach and model approaches for the development of QoL indicators and indices. In our study we propose the method of response function as a method of the construction of purposeful, credible integrated models from data and prior knowledge or information. The method of response function implies credible models in the sense that they are identifiable, and, hopefully, explains system output behaviour satisfactorily.Using response function method for the development of QoL models, we are able to obtain QoL indices as the direct output of the models. 相似文献
11.
12.
Spatial variation in growth of stream‐dwelling brown trout Salmo trutta was explored in 13 populations using a long‐term study (1993–2004) in the Bay of Biscay drainage, northern Spain. The high variability in fork length (LF) of S. trutta in the study area was similar to the body‐size range found in the entire European distribution of the species. Mean LF at age varied: 0+ years, 57·4–100·7 mm; 1+ years, 111·6–176·0 mm; 2+ years, 155·6–248·4 mm and 3+ years, 194·3–290·9 mm. Average LF at age was higher in main courses and lower reaches compared with small tributaries and upper reaches. Annual specific growth rates (GL) were: 0+ to 1+ years, 0·634–0·825 mm mm−1 year−1; 1+ to 2+ years, 0·243–0·342 mm mm−1 year−1; 2+ to 3+ years, 0·166–0·222 mm mm−1 year−1, showing a great homogeneity. Regression models showed that water temperature and altitude were the major determinants of LF at age variability within the study area. A broader spatial analysis using available data from stream‐dwelling S. trutta populations throughout Europe indicated a negative relationship between latitude and LF of individuals and a negative interaction between latitude and altitude. These findings support previous evidence of the pervasive role of water temperature on the LF of this species. Altitude appeared as the overall factor that includes the local variation of other variables, such as water temperature or food availability. At a larger scale, latitude was the factor that encompassed these environmental gradients and explained the differences in LF of S. trutta. In summary, LF at age in stream‐dwelling S. trutta decreases with latitude in Europe, the converse of Bergmann's rule. 相似文献
13.
The relationship between plant species richness and the space organization of the community at different small scales was studied. The study was based on 51 sites distributed along a belt from Central Spain to Portugal. Each site was analyzed with a transect cutting across the boundary between two neighboring patches of shrubland and grassland. Local spatial organization of vegetation was analyzed at different levels of detail and each transect was divided into successively smaller portions. The first division coincides with a physiognomic perception of the site in two patches (shrubland and grassland). The average spatial niche width of the species was used to calculate the spatial organization of the vegetation of each division in each site. The correlation between species richness and spatial organization depended on the block size under consideration. A physiognomic criterion, sectorizing the sites into patches of shrubland and grassland, determines noteworthy floristic changes but does not enable us to express satisfactorily the variability in plant richness. In order to account for this variation, other factors must be taken into account which act at a more detailed small-scale and which determine the internal variability of these patches. In the case studied, the species richness of the sites increases along with an increase in the percentage of species whose occupation of the space is relatively restricted within the site. Many of these species are, however, frequent within the whole of the territory studied. The results highlight the importance of the level of local scale at which the factors influencing occupation of the space, and consequentially, plant richness, preferentially act. This circumstance ought to be taken into consideration in strategies for the conservation of biological diversity, and based on the delimitation of protected spaces with criteria frequently linked to the physiognomy of the vegetation.Nomenclature: Follows T.G. Tutin et al. 1964-1980. Flora Europaea. Cambridge University Press, Cambridge 相似文献
14.
A Walker 《BMJ (Clinical research ed.)》1991,303(6811):1194-1197
15.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand. 相似文献
16.
Aim To investigate how plant diversity of whole islands (‘gamma’) is related to alpha and beta diversity patterns among sampling plots within each island, thus exploring aspects of diversity patterns across scales. Location Nineteen islands of the Aegean Sea, Greece. Methods Plant species were recorded at both the whole‐island scale and in small 100 m2 plots on each island. Mean plot species richness was considered as a measure of alpha diversity, and six indices of the ‘variation’‐type beta diversity were also applied. In addition, we partitioned beta diversity into a ‘nestedness’ and a ‘replacement’ component, using the total species richness recorded in all plots of each island as a measure of ‘gamma’ diversity. We also applied 10 species–area models to predict the total observed richness of each island from accumulated plot species richness. Results Mean alpha diversity was not significantly correlated with the overall island species richness or island area. The range of plot species richness for each island was significantly correlated with both overall species richness and area. Alpha diversity was not correlated with most indices of beta diversity. The majority of beta diversity indices were correlated with whole‐island species richness, and this was also true for the ‘replacement’ component of beta diversity. The rational function model provided the best prediction of observed island species richness, with Monod’s and the exponential models following closely. Inaccuracy of predictions was positively correlated with the number of plots and with most indices of beta diversity. Main conclusions Diversity at the broader scale (whole islands) is shaped mainly by variation among small local samples (beta diversity), while local alpha diversity is not a good predictor of species diversity at broader scales. In this system, all results support the crucial role of habitat diversity in determining the species–area relationship. 相似文献
17.
Global environmental change (GEC), in particular rising atmospheric CO2 concentration and temperature, will affect most ecosystems. The varied responses of plants to these aspects of GEC are well documented. As with other key below-ground components of terrestrial ecosystems, the response of the ubiquitous mycorrhizal fungal root symbionts has received limited attention. Most of the research on the effects of GEC on mycorrhizal fungi has been pot-based with a few field (especially monoculture) studies. A major question that arises in all these studies is whether the GEC effects on the mycorrhizal fungi are independent of the effects on their plant hosts. We evaluate the current knowledge on the effects of elevated CO2 and increased temperature on mycorrhizal fungi and focus on the few available field examples. The value of using long-term and large-scale field experiments is emphasised. We conclude that the laboratory evidence to date shows that the effect of elevated CO2 on mycorrhizal fungi is dependent on plant growth and that temperature effects seen in the past might have reflected a similar dependence. Therefore, how temperature directly affects mycorrhizal fungi remains unknown. In natural ecosystems, we predict that GEC effects on mycorrhizal fungal communities will be strongly mediated by the effects on plant communities to the extent that community level interactions will prove to be the key mechanism for determining GEC-induced changes in mycorrhizal fungal communities. 相似文献
18.
Finlay BJ Thomas JA McGavin GC Fenchel T Clarke RT 《Proceedings. Biological sciences / The Royal Society》2006,273(1596):1935-1941
The insects are probably the most hyperdiverse and economically important metazoans on the planet, but there is no consensus on the best way to model the dimensions of their diversity at multiple spatial scales, and the huge amount of information involved hinders data synthesis and the revelation of 'patterns of nature'. Using a sample of more than 600k insect species in the size range 1-100mm, we analysed insect body sizes and revealed self-similar patterns persisting across spatial scales from several hectares to the World. The same patterns were found in both Northern and Southern Hemispheres. The patterns include: parallel rank-abundance distributions; flatter species-area curves in smaller insects-indicating their wider geographical distribution; the recurrence of the same species-rich family in the same body-size class at all spatial scales-which generates self-similar size-frequency distributions (SFDs)-and the discovery that with decreasing mean body size, local species richness represents an increasing fraction of global species richness. We describe how these 'rationalizing' patterns can be translated into methods for monitoring and predicting species diversity and community structure at all spatial scales. 相似文献
19.
Aim The aim of this paper is to examine taxonomic homogenization in ungulates globally and at the local scale in South Africa. Specifically, we aim to examine the roles of distance, scale, time, extinctions vs. introductions, and extralimital vs. extraregional introductions in the homogenization of ungulate biotas, and to determine pathways of introduction of ungulate species globally and the proximate explanatory variables of ungulate introductions in South Africa. Location Forty‐one countries globally and three spatial resolutions in South Africa. Methods Indigenous, extirpated and established introduced ungulate species data were obtained for countries globally, and at a quarter‐degree grid‐cell resolution in South Africa. Homogenization was calculated using Jaccard’s index of similarity (JI) for countries globally and for three spatial resolutions in South Africa. Zoo holdings and transfer data from the International Species Information System database were used to investigate the relationship between non‐indigenous ungulate species introductions and the number of non‐indigenous ungulate species in zoos. Relationships between JI and species richness, and between numbers of introductions and several environmental and social factors were examined using generalized linear models. Results Homogenization in ungulates was 2% for countries globally and 8% at the coarsest resolution in South Africa. Homogenization increased with increasing resolution and with time, but it decreased with increasing percentage change in species richness. Globally, introductions contributed more to homogenization than did extinctions. Within South Africa, extralimital introductions contributed more to the homogenization of ungulate assemblages than did extraregional ones, and ungulates were typically introduced to high‐income areas with high human population and livestock densities. The same was not true in the past, when ungulates were introduced to ungulate species‐poor areas. The number of non‐indigenous ungulate species established in a country is significantly related to the number of non‐indigenous ungulate species in zoos in the country, possibly owing to sales of surplus animals from zoos. Main conclusions Ungulate faunas are homogenized at both the global scale and in South Africa, with extralimital introductions being of considerable significance regionally. In consequence, increasing attention will have to be given to the conservation consequences of ungulate translocations, both within particular geopolitical regions and across the globe. 相似文献