首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synergetic process of folliculogenesis is mainly regulated by GDF-9 and BMP-15 as well as their receptors, such as BMPR2, TβR1 and BMPR1B. Expressions of these factors and the receptors are significant different among species. This study was designed to detect expression of GDF-9, BMP-15 and their receptors in mouse, porcine and human healthy follicles by immunohistochemistry. Three ages of human ovary were studied according to ovarian developmental schedule, i.e. gestational week (GW) 16, puberty (14 year-old) and adult (40 year-old). The results showed that both GDF-9 and BMP-15 were detectable in oocytes from primary follicles onward, besides, BMP-15 also presented in granulosa cells (GCs) and follicular follicle of mature follicles in mouse. However, they were maintained in oocytes and GCs from primordial to mature follicles in porcine except that GDF-9 was undetectable in GCs of mature follicles. For human ovary, GDF-9 presented in oocytes of primordial follicles in all samples, whereas BMP-15 was only observed in primordial follicle of adult ovary. Receptors, BMPR2, TβR1 and BMPR1B were found in oocytes and GCs of all follicles in mouse and porcine. In human, they were stained in oocytes from primordial follices but BMPR1B was not expressed in pubertal primordial follicles. Furthermore, we found that GDF-9, BMP-15 and three receptors distributed in adult corpus lutea. Collectively, our studies suggested that GDF-9, BMP-15 and their receptors might correlate with primordial follicular recruitment in pig and human. Positive expression of the receptors (BMPR2, TβR1 and BMPR1B)in primordial follicles of mouse ovaries indicated that these receptors might interact with others ligands besides GDF-9 and BMP-15 to regulate primordial follicular activity in mouse. Moreover, presence of GDF-9 in oocytes and BMP-15 in oocytes and GCs of mature follicles from mice and porcine elucidated coordinated roles of GDF-9 and BMP-15 in cumulus oophorus expansion. Additionally, expression of these factors in adult human corpus lutea suggested they play roles in corpus luteum activity.  相似文献   

2.
Mammalian females enter puberty with follicular reserves that exceed the number needed for ovulation during a single lifetime. Follicular depletion occurs throughout reproductive life and ends in menopause, or reproductive senescence, when the follicle pool is exhausted. The mechanisms regulating the production of a species-specific initial follicle pool are not well understood. However, the establishment of a follicular reserve is critical to defining the length of reproductive cyclicity. Here we show that activin A (rh-ActA), a known regulator of follicle formation and growth in vitro, increased the number of postnatal mouse primordial follicles by 30% when administered to neonatal animals during the time of germline cyst breakdown and follicle assembly. This expansion in the initial follicle pool was characterized by a significant increase in both germ cell and granulosa cell proliferation. However, the excess follicles formed shortly after birth did not persist into puberty and both adult rh-ActA- and vehicle-treated animals demonstrated normal fertility. A follicle atresia kinetic constant (k(A)) was modeled for the two groups of animals, and consistent with the empirical data, the k(A) for rh-ActA-treated was twice that of vehicle-treated animals. Kinetic constants for follicle formation, follicle loss and follicle expansion from birth to postnatal day 19 were also derived for vehicle and rh-ActA treatment conditions. Importantly, introduction of exogenous rh-ActA revealed an intrinsic ovarian quorum sensing mechanism that controls the number of follicles available at puberty. We propose that there is an optimal number of oocytes present at puberty, and when the follicle number is exceeded, it occurs at the expense of oocyte quality. The proposed mechanism provides a means by which the ovary eliminates excess follicles containing oocytes of poor quality prior to puberty, thus maintaining fertility in the face of abnormal hormonal stimuli in the prepubertal period.  相似文献   

3.
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth, mammalian ovaries contain their lifetime’s supply of primordial follicles, from which point onwards there is a steady release of follicles into the growing follicular pool.The ovary is particularly amenable to development in vitro, with follicles growing in a highly physiological manner in culture. This work describes the culture of whole neonatal ovaries containing primordial follicles, and the culture of individual ovarian follicles, a method which can support the development of follicles from an immature through to the preovulatory stage, after which their oocytes are able to undergo fertilization in vitro. The work outlined here uses culture systems to determine how the ovary is affected by exposure to external compounds. We also describe a co-culture system, which allows investigation of the interactions that occur between growing follicles and the non-growing pool of primordial follicles.  相似文献   

4.
The development of an ovarian follicle requires a complex set of reciprocal interactions between the oocyte and granulosa cells in order for both types of cells to develop properly. These interactions are largely orchestrated by the oocyte via paracrine factors such as growth differentiation factor 9 (GDF9). To examine these interactions further, a study was conducted of the effects of oocytes at different stages of development on proteins synthesized by mouse granulosa cells during the transition of granulosa cells (GCs) from preantral, secondary (2 degrees ) follicles (2 degrees GCs) to mural granulosa cells (3 degrees GCs) of antral tertiary (3 degrees ) follicles. The ability of recombinant GDF9 to mimic the effects of oocytes was also determined. Effects were evaluated by high- resolution, two-dimensional protein gel electrophoresis coupled to computer-assisted, quantitative gel image analysis. Coculture of the 2 degrees GCs with growing oocytes (GOs) from 2 degrees follicles brought about many of the changes in granulosa cell phenotype associated with the 2 degrees to 3 degrees follicle transition. GDF9 likewise brought about many of these changes, but only a subset of GDF9-affected protein spots were also affected by coculture with GOs. Coculture of 2 degrees GCs with the nearly fully grown oocytes (FGOs) from 3 degrees follicles had a reduced effect on 2 degrees GC phenotype, in comparison with coculture with GOs. For some proteins, oocyte coculture or GDF9 treatment appeared to have opposite effects on 2 degrees GCs and 3 degrees GCs. Additional effects of GDF9 and oocytes were seen in cultures of 2 degrees GCs for proteins other than those that differed between untreated control 2 degrees and 3 degrees GCs. These results indicate that GOs and GDF9 can each induce 2 degrees GCs to shift their phenotype toward that of 3 degrees GCs. The ability of the oocyte to produce this effect is diminished with oocyte development. The transition in the GC phenotype promoted by oocytes appears stable because differences in 2 degrees GCs promoted by oocytes and GDF9 were observed in untreated 3 degrees GCs. We conclude that the influence of the oocyte on GCs changes with the progression of their development, and so too does the response of the GCs to the oocyte. Moreover, by acting on the 2 degrees GCs, GOs are able to influence stably the phenotype of 3 degrees GCs. Thus, at or near the 2 degrees to 3 degrees follicle transition, signals from the growing oocyte contribute to the development of the mural GC phenotype.  相似文献   

5.
6.
Primordial follicle pool established perinatally is a non-renewable resource which determines the female fecundity in mammals. While the majority of primordial follicles in the primordial follicle pool maintain dormant state, only a few of them are activated into growing follicles in adults in each cycle. Excessive activation of the primordial follicles accelerates follicle pool consumption and leads to premature ovarian failure. Although previous studies including ours have emphasized the importance of keeping the balance between primordial follicle activation and dormancy via molecules within the primordial follicles, such as TGF-β, E-Cadherin, mTOR, and AKT through different mechanisms, the homeostasis regulatory mechanisms of primordial follicle activation remain unclear. Here, we reported that HDAC6 acts as a key negative regulator of mTOR in dormant primordial follicles. In the cytoplasm of both oocytes and granulosa cells of primordial follicles, HDAC6 expressed strong, however in those activated primordial follicles, its expression level is relatively weaker. Inhibition or knockdown of HDAC6 significantly promoted the activation of limited primordial follicles while the size of follicle pool was not affected profoundly in vitro. Importantly, the expression level of mTOR in the follicle and the activity of PI3K in the oocyte of the follicle were simultaneously up-regulated after inhibiting of HDAC6. The up-regulated mTOR leads to not only the growth and differentiation of primordial follicles granulosa cells (pfGCs) into granulosa cells (GCs), but the increased secretion of KITL in these somatic cells. As a result, inhibition of HDAC6 awaked the dormant primordial follicles of mice in vitro. In conclusion, HDAC6 may play an indispensable role in balancing the maintenance and activation of primordial follicles through mTOR signaling in mice. These findings shed new lights on uncovering the epigenetic factors involved physiology of sustaining female reproduction.Subject terms: TOR signalling, Cell proliferation, Endocrine reproductive disorders  相似文献   

7.
The incidence of polyovular types in the growing follicle population was estimated using quantitative cytology. Of 15 species studied, polyovular follicles were recorded in the following species and in ascending order of abundance: rabbits, rhesus monkeys, humans, cats, dogs. The incidence in bitches was 14% in animals aged 1-2 years but only 5% at 7-11 years old. The frequency of the various types of polyovular preantral follicle varied inversely with the numbers of oocytes per follicle and the probability of finding a follicle with more than 5 oocytes was remote. In young ovaries the frequency was constant in the early stages of growth but decreased in the largest preantral stage. The pattern in ageing ovaries was, by contrast, one of declining frequency such that few if any polyovular types completed development. The ovary of the ageing bitch was also characterized by a higher incidence of degenerating follicles and a much smaller pool of primordial stages. Polyovular follicles were larger than uniovular types at comparable stages which were defined by the number of granulosa cell layers. Their oocytes were smaller but the overall ooplasmic mass was increased with a corresponding increase in the mass of granulosa cells.  相似文献   

8.
The formation of ovarian follicles is a finely tuned process that takes place within a narrow time-window in rodents. Multiple factors and pathways have been proposed to contribute to the mechanisms triggering this process but the role of endocrine factors, especially estrogens, remains elusive. It is currently hypothesized that removal from the maternal hormonal environment permits follicle formation at birth. However, experimentally-induced maintenance of high 17β-estradiol (E2) levels leads to subtle, distinct, immediate effects on follicle formation and oocyte survival depending on the species and dose. In this study, we examined the immediate effects of neonatal E2 exposure from post-natal day (PND) 0 to PND2 on the whole organism and on ovarian follicle formation in rats. Measurements of plasma E2, estrone and their sulfate conjugates after E2 exposure showed that neonatal female rats rapidly acquire the capability to metabolize and clear excessive E2 levels. Concomitant modifications to the mRNA content of genes encoding selected E2 metabolism enzymes in the liver and the ovary in response to E2 exposure indicate that E2 may modify the neonatal maturation of these organs. In the liver, E2 treatment was associated with lower acquisition of the capability to metabolize E2. In the ovary, E2 depleted the oocyte pool in a dose dependent manner by PND3. In 10 µg/day E2-treated ovaries, apoptotic oocytes were observed in newly formed follicles in addition to areas of ovarian cord remodeling. At PND6, follicles without any visible oocyte were present and multi-oocyte follicles were not observed. Our study reveals a major species-difference. Indeed, neonatal exposure to E2 depletes the oocyte pool in the rat ovary, whereas in the mouse it is well known to increase oocyte survival.  相似文献   

9.
Picton HM 《Theriogenology》2001,55(6):1193-1210
Investigations of primordial follicle formation and growth are fundamental to our understanding of female gamete production. In all mammalian females the full complement of oocytes is established during fetal development. This store of primordial follicles is not renewable and serves the entire reproductive life span of the adult. The correct programming of fetal ovarian development and the number of primordial follicles formed will therefore limit the fecundity of the ovary. Primordial follicles are characterized by the presence of a single oocyte surrounded by a varying number of pregranulosa cells. The relatively small size, undifferentiated status and large numbers of primordial follicles make them prime candidates for use in basic and applied research in animal production, gene transfer and cloning. Furthermore, the development of cell culture systems that use primordial follicles as a source of oocytes for in vitro growth and maturation will enable us to maximize the potential of high genetic merit females and to shorten generation intervals. Despite these possibilities, primordial follicles are the least understood of all stages of follicle development. The factor(s) responsible for maintaining the primordial pool or, conversely, for activating primordial follicle growth remain elusive.  相似文献   

10.
Follicular atresia is the main process responsible for the loss of follicles and oocytes from the ovary, and it is the root cause of ovarian aging. Apoptosis of granulosa cells (GCs) is the cellular mechanism responsible for follicular atresia in mammals. Recent advances have highlighted fundamental roles for EGR1 in age-related diseases via the induction of apoptosis. In the present study, we found that the expression of EGR1 was significantly increased in aged mouse ovaries compared with young ovaries. Immunohistochemical analysis revealed strongly positive EGR1 staining in atretic follicles, especially in apoptotic granulosa cells. We further showed that EGR1 up-regulation in mouse primary granulosa cells inhibited cell proliferation and promoted apoptosis. In addition, the promotion of apoptosis in GCs by EGR1 increases over time and with reactive oxygen species (ROS) stimulation. Our mechanistic study suggested that EGR1 regulates GC apoptosis in a mitochondria-dependent manner and that this mainly occurs through the NF-κB signaling pathway. In conclusion, our results suggested that age-related up-regulation of EGR1 promotes GC apoptosis in follicle atresia during ovarian aging.  相似文献   

11.
Mammalian oocytes go through a long and complex developmental process, while acquiring the competencies that are required for fertilization and embryogenesis. Recent studies revealed that the communication between oocytes and granulosa cells (GCs) is a critical process for female follicle development. In the current study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the cell junctions between oocytes and GCs in mice preantral follicles. The attenuation of SEMA6C expression by siRNA decreased the cell–cell junctions and accelerated follicle atresia in vitro. PI3K-AKT pathway was activated when SEMA6C expression was downregulated. And the LY294002, a PI3K inhibitor, could reverse the effect of low SEMA6C expression on cell junctions in preantral follicles. Our findings revealed that Sema6c was involved in follicle development, and the suppression of SEMA6C led to cell junction defection by activating the PI3K/AKT pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian aging.  相似文献   

12.
The growth and development of follicles within the ovary are highly dependent on autocrine and paracrine signaling involving growth factors from granulosa cells, theca cells, stromal interstitial cells, and the oocytes. The growth factor bone morphogenetic protein-4 (BMP-4) and its receptor (BMPR-IB) have been detected in ovaries, and a mutation in BMPR-IB has been associated with abnormal ovulation rate. The objective of the current study was to examine the role that BMP-4 plays in the early stages of primordial follicle development. Ovaries from 4-day-old rats were placed into a whole-ovary organ culture system for 2 wk to investigate the effect that treatment with exogenous BMP-4 has on early follicle development. BMP-4-treated ovaries had a significantly higher proportion of developing primary follicles and fewer arrested primordial follicles than did untreated controls. This indicates that BMP-4 promotes primordial follicle development and the primordial-to-primary follicle transition. Ovaries were also treated with neutralizing antibody against BMP-4 to determine effects of removing endogenously produced BMP-4. Interestingly, ovaries treated with BMP-4 antibody were markedly smaller than controls. This was associated with a progressive loss of oocytes and primordial follicles, a progressive increase in cellular apoptosis, and an accompanying loss of normal ovarian tissue morphology over time. Immunocytochemistry localized BMP-4 protein to isolated stromal cell populations, selected stromal cells (i.e., pretheca cells) associated with developing primordial follicles, and the basement membrane of follicles. Ovaries were treated with BMP-4 and RNA collected after organ culture to determine whether BMP-4 signaling affects expression of other growth factors. Kit ligand and basic fibroblast growth factor expression was unchanged, but TGFalpha expression was decreased in whole ovaries. Taken together, these data suggest that BMP-4 plays an important role in promoting the survival and development of primordial follicles in the neonatal ovary.  相似文献   

13.
Methods to predict numbers of healthy oocytes in the ovaries of young adults could have important diagnostic relevance in family planning and animal agriculture. We have observed that peak antral follicle count (AFC) determined by serial ovarian ultrasonography during follicular waves is very highly reproducible within individual young adult cattle, despite 7-fold variation among animals. Herein, we tested the hypothesis that AFC is positively associated with the number of morphologically healthy oocytes and follicles in ovaries and with serum concentrations of anti-Müllerian hormone (AMH), an indirect marker for number of healthy follicles and oocytes in ovaries. In the present study, age-matched young adult cattle (12-18 mo old) were subjected to serial ultrasonography to identify animals with a consistently high (> or =25 follicles that were > or =3 mm in diameter) or low (< or =15 follicles) AFC during follicular waves. Differences in serum AMH concentrations, ovary weight, and number of morphologically healthy and atretic follicles and oocytes were determined. The phenotypic classifications of cattle based on AFC during follicular waves or AMH concentrations both predict reliably the relative number of morphologically healthy follicles and oocytes in ovaries of age-matched young adult cattle.  相似文献   

14.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The prenatal exposure of mice to diethylstilbestrol (DES, 10 micrograms/kg on day 15 of gestation) caused both quantitative and structural alterations in ovarian follicles within the neonatal ovary. At birth, control ovaries consisted of small type 1 and 2 ovarian follicles located in the ovarian cortex. By postnatal day 7, ovarian follicle development had advanced to the type 4 stage with larger follicles located within the ovarian medulla. In DES-exposed animals, ovarian follicle maturation was advanced with type 3b and 4 follicles appearing 24 h prior to their appearance in control animals. Also, type 5 ovarian follicles were present on postnatal day 6 in experimental animals but were never seen in control animals. In addition to an alteration in ovarian follicle dynamics, the diameter of individual ovarian follicles was transit time between the various stages of follicular development which results in a greater number of developmentally advanced ovarian follicles being present during neonatal ovarian development. The mechanism by which prenatal exposure to DES alters ovarian follicle dynamics during neonatal development is not known.  相似文献   

16.
The mammalian ovary contains a large number of follicles that are in various developmental stages. The largest portion of them are primordial follicles. However, throughout the female reproductive lifespan only a small proportion of these follicles will produce oocytes competent to undergo successful maturation and ovulation. The rest of the ovarian oocytes (>99.9%) undergo atresia. It would be of great practical benefit to rescue some of these follicles by growing them in culture in order to provide an extra source of gametes. There is considerable interest in developing technologies that aim to produce fully-grown, developmentally competent oocytes from a pool of early developmental stages of follicles. Two methods have been used: 1/ long-term in vitro culture of either follicles or oocytes, and 2/ transplantation of ovarian tissue grafts. The development of efficient technologies may provide an additional source of oocytes for livestock production and reproduction in humans and rare or endangered species. The aim of this paper is to present a comprehensive review of recent achievements in the utilization of small ovarian follicles (primordial, preantral and early antral) by long-term in vitro culture and/or transplantation of ovarian tissue grafts (fresh and cryopreserved) in mammals including humans.  相似文献   

17.
Ovulation (i.e., the release of mature oocytes from the ovary) requires spatially targeted follicle rupture at the apex. Both progesterone and prostaglandins play key roles in the ovulatory process. We have studied follicle rupture and ovulation in adult cycling rats treated with a progesterone receptor antagonist (RU486), an inhibitor of prostaglandin synthesis (indomethacin, IM), or both. All rats were treated with LHRH antagonist on the morning (0900 h) of proestrus to inhibit endogenous gonadotropins and with 10 microg of ovine LH (oLH) at 1700 h in proestrus to induce ovulation. Animals were treated from metestrus to proestrus with 2 mg/day of RU486 or vehicle (olive oil) and on the morning of proestrus (1200 h) with 1 mg of IM or vehicle (olive oil). Some rats treated with vehicle or RU486 were killed on the morning of proestrus to assess preovulatory follicle development. The remaining rats were killed on the morning of estrus to study follicle rupture and ovulation. In vehicle-treated rats, oLH induced ovulation in 98% of follicles. In IM-treated rats, spatial targeting of follicle rupture was disrupted. Most oocytes were released to the ovarian interstitium (50%) or to the periovarian space (39%), and a smaller percentage (11%) of oocytes remained trapped inside the luteinized follicle. RU486-treated rats showed, on the morning of estrus, unruptured luteinized follicles. Only occasionally (2.8%), the oocytes were released to the periovarian space. IM treatment induced follicle rupture in RU486-treated rats, and 25% of oocytes were released to the ovarian interstitium. However, the number of oocytes released to the periovarian space (i.e., ovulated) was not increased by IM treatment in rats lacking progesterone actions. Overall, these data indicate that RU486 and IM have opposite effects on follicle rupture and suggest that both progesterone and prostaglandins are necessary for the spatial targeting of follicle rupture at the apex.  相似文献   

18.
Arav A 《Theriogenology》2001,55(7):1561-1565
An inexpensive and convenient method of collecting large number of oocytes for in vitro procedures is by aspiration of follicles visible on the surface of isolated ovary. This method yielded only moderate numbers of oocytes per ovary, and it was found that the yield could be improved by slicing the tissue to reach deep, cortical follicles. However, slicing was time consuming and increased chances for sepsis. We developed a new technique that allows direct viewing of cortical follicles for aspiration of oocytes by transillumination of the ovarian medulla and cortex with a Plexiglas rod inserted through a small incision at the hilus. The technique, called "Transillumination-Aspiration Ovary" (TAO), increased the oocyte yield by 50% per ovary. The oocytes are probably recovered from deeper follicles which are difficult to identify during regular oocyte aspiration. The oocytes had a normal grading and exhibited normal in vitro development efficiency. Using the "TAO" technique we recovered 777 oocytes from 2160 follicles in 106 ovaries, a recovery rate of 36% from follicles and a mean of 7.3 oocytes/ovary. When we aspirated only surface follicles, we obtained 523 oocytes in 1384 visible follicles in 107 ovaries, for a recovery rates of 37% but a mean yield of 4.9 oocytes per ovary. Mean number of follicles were 20.5% with TAO and 12.8% without, thus recovery rates of oocytes per follicle were similar with both methods, but yield of oocytes per ovary was higher with TAO, thus showing that the difference between the two methods lies in higher numbers of visible follicles with TAO. Moreover, with the TAO technique 71% of the total oocytes we recovered (n=551) were grade I or II oocytes, in which 52% cleaved to the 2 to 4-cell stage and 26% had reached the blastocyst stage. We conclude that the method is effective for accurately locating cortical and peripheral follicles that contain oocytes suitable for IVF and in vitro embryo production (IVP).  相似文献   

19.
General belief in reproductive biology is that in most mammals female germ line stem cells are differentiated to primary oocytes during fetal development and oogenesis starts from a pool of primordial follicles after birth. This idea has been challenged previously by using follicle kinetics studies and demonstration of mitotically active germ cells in the postnatal mouse ovary (Johnson et al., 2004; Kerr et al., 2006; Zhang et al., 2008). However, the existence of a population of self-renewing ovarian germ line stem cells in postnatal mammals is still controversial (Eggan et al., 2006; Telfer et al., 2005; Gosden, 2004). Recently, production of offspring from a germ line stem cell line derived from the neonatal mouse ovary was reported (Zou et al., 2009). This report strongly supports the existence of germ line stem cells and their ability to expand in vitro. Recently, using a transgenic mouse model in which GFP is expressed under a germ cell-specific Oct-4 promoter, we isolated and generated multipotent cell lines from male germ line stem cells (Izadyar et al., 2008). Using the same strategy we isolated and derived cell lines from postnatal mouse ovary. Interestingly, ovarian germ line stem cells expanded in the same culture conditions as the male suggesting that they have similar requirements for their self-renewal. After 1 year of culture and many passages, ovarian germ line stem cells maintained their characteristics and telomerase activity, expressed germ cell and stem cell markers and revealed normal karyotype. As standard protocol for differentiation induction, these cells were aggregated and their ability to form embryoid bodies (EBs) was investigated. EBs generated in the presence of growth factors showed classical morphology and expressed specific markers for three germ layers. However, in the absence of growth promoting factors EBs were smaller and large cells with the morphological and molecular characteristics of oocytes were formed. This study shows the existence of a population of germ line stem cell in postnatal mouse ovary with multipotent characteristics.  相似文献   

20.
We describe the use of direct injection of circular plasmid DNA and subsequent in vivo electroporation (EP) for efficient gene delivery to the ovarian cells, including follicular cells and oocytes of mice. When Trypan blue (TB) was injected into the central portion of an ovary by a glass micropipette, rapid dispersion of TB to each preantral and antral follicle was observed. Injections of lacZ-expressing plasmid DNA and subsequent in vivo EP resulted in transfection of follicles with efficiencies ranging from 8-60%, together with cells in the thecal portion of the ovary. Of the lacZ-positive follicles, some oocytes were also positive for lacZ activity. These findings suggest that a solution introduced inside the ovary is rapidly dispersed to each follicle. With this technique, we expect great progress in genetic engineering in murine ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号