首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human Y chromosome encodes a testis-determining factor (TDF) which is responsible for initiating male sex determination. Recently a region of the Y chromosome (SRY) was identified as part of the TDF gene. We have identified a three-generation family (N) in which all XY individuals have a single base-pair substitution resulting in a conservative amino acid change in the conserved domain of the SRY open reading frame. Three individuals are XY sex-reversed females, and two are XY males. Several models are proposed to explain association between a sequence variant in SRY and two sex phenotypes.  相似文献   

2.
The Y chromosome gene SRY (sex-determining region, Y gene) has been equated with the mammalian testis-determining factor. The SRY gene of five subjects with 46,XY complete gonadal dysgenesis (46,XY karyotype, completely female external genitalia, normal Müllerian ducts, and streak gonads) was evaluated for possible mutations in the coding region by using both single-strand conformation polymorphism (SSCP) assay and DNA sequencing. Mutations were identified in three subjects, of which two gave altered SSCP patterns. Two of them were point mutations causing amino acid substitutions, and the third was a single-base deletion causing a frameshift. All three mutations caused alterations in the putative DNA-binding region of the SRY protein. Genomic DNA was obtained from the fathers of two of the three mutant patients: one mutation was demonstrated to be de novo, and the other was inherited. The presence of SRY mutations in three of five patients suggests that the frequency of SRY mutations in XY females is higher than current estimates.  相似文献   

3.
Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal   总被引:15,自引:0,他引:15  
Summary XY females (n=17) were analysed for mutations in SRY (sex-determining region Y gene), a gene that has recently been equated with the testis determining factor (TDF). SRY sequences were amplified by the polymerase chain reaction (PCR) and analysed by both the single strand conformational polymorphism assay (SSCP) and DNA sequencing. The DNA from two individuals gave altered SSCP patterns; only these two individuals showed any DNA sequence variation. In both cases, a single base change was found, one altering a tryptophan codon to a stop codon, the other causing a glycine to arginine amino acid substitution. These substitutions lie in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. The corresponding regions of DNA from the father of one individual and the paternal uncle of the other, were sequenced and found to be normal. Thus, in both cases, sex reversal is associated with de novo mutations in SRY. Combining this data with two previously published reports, a total of 40 XY females have now been analysed for mutations in SRY. The number of de novo mutations in SRY is now doubled to four, adding further strength to the argument that SRY is TDF.  相似文献   

4.
A familial mutation in SRY, the gene coding for the testis-determining factor TDF, was identified in an XY female with gonadal dysgenesis, her father, her two brothers and her uncle. The mutation consists of a T to C transition in the region of the SRY gene coding for a protein motif known as the high mobility group (HMG) box, a protein domain known to confer DNA-binding specificity on the SRY protein. This point mutation results in the substitution, at amino acid position 109, of a serine residue for phenylalanine, a conserved aromatic residue in almost all HMG box motifs known. This F109S mutation was not found in 176 male controls. When recombinant wildtype SRY and SRYF109S mutant protein were tested in vitro for binding to the target site AAC AAAG, no differences in DNA-binding activity were observed. These results imply that the F109S mutation either is a rare neutral sequence variant, or produces an SRY protein with slightly altered in vivo activity, the resulting sex phenotype depending on the genetic back-ground or environmental factors.This paper is dedicated by G. S. to Professor Ulrich Wolf on the occasion of his 60th birthday  相似文献   

5.
We describe a novel double nucleotide substitution in the SRY gene of a 46,XY female with gonadal dysgenesis or Swyer syndrome. The SRY sequence was analysed by both the single-strand conformational polymorphism assay and direct DNA sequencing of products from the polymerase chain reaction. A double nucleotide substitution was identified at codon 18 of the conserved HMG box motif, causing an arginine to asparagine amino-acid substitution. The altered residue is situated in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. Since the mutation abolishes one HhaI recognition site, the results were confirmed by HhaI restriction mapping. No other mutations were found in the remaining regions of the gene. The corresponding DNA region from the patient’s brother was analysed and found to be normal. We conclude that the SRY mutation in the reported XY female occurred de novo and is associated with sex reversal. Received: 16 December 1996 / Accepted: 5 May 1997  相似文献   

6.
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein.  相似文献   

7.
Two novel mutations in the sex-determining gene SRY were identified by screening DNA from 30 sex-reversed XY females by using the SSCP assay. Both point mutations lead to an amino acid substitution in the DNA-binding high-mobility-group domain of the SRY protein. The first mutation, changing a serine at position 91 to glycine, was found in a sporadic case. The second mutation, leading to replacement of a highly conserved proline at position 125 with leucine, is shared by three members of the same family, two sisters and a half sister having the same father. The mutant SRY proteins showed reduced DNA-binding ability in a gel-shift assay. Analysis of lymphocyte DNA from the respective fathers revealed that they carry both the wild-type and the mutant version of the SRY gene. The fact that both fathers transmitted the mutant SRY copy to their offspring implies that they are mosaic for the SRY gene in testis as well as in blood, as a result of a mutation during early embryonic development.  相似文献   

8.
The Y chromosome gene SRY plays an important role in normal male sexual development and is thought to be the testis-determining factor. We describe a familial nonsense mutation in SRY, shared by two XY sisters with complete gonadal dysgenesis and, in a mosaic manner, by their father. This mutation, consisting of a C to T transition in position 1 of codon 97 of SRY, results in a truncated peptide with an incomplete DNA-binding domain. The mutation is also present in the father of the two cases, but a portion of wild-type SRY also remains. Our data suggest that the father suffered a postzygotic mutation early in development, but that he retained a remnant of functional SRY protein that accounts for his normal development. Received: 18 September 1995 / Revised: 21 November 1995  相似文献   

9.
10.
Normal sexual development in man is the consequence of a complex process. This review focuses on the translation of genedal sex (XX or XY karyotype) into gonadal sex (testis or ovary). During the last three years attempts to identify and clone the testis determining factor (TDF) have exploited detailed maps of the Y chromosome established by geneticists over the last decade. A candidate gene, named SRY (sex determining region, Y) located at the tip of the short arm of the Y chromosome, shows many characteristics in common with TDF in that it is the sole element of the Y chromosome required for male development. The discovery of TDF led us to analyse sex-reversed individuals, i.e. XX males and XY females, with the aim of constructing a model for the processes regulating the development of an organ as complex as the testis. This SRY gene is now the subject of intense molecular biological effort by various groups, effort which we hope will elucidate the mechanism(s) of sex determination.  相似文献   

11.
睾丸决定因子基因(Testis-determining factor,TDF)位于Y染色体短臂上,它的表达产物诱导睾丸组织的发生。SRY基因(Sex-determining Region of the Y)位于Y染色体的性别决定区内,许多特征显示SRY就是TDF。我们选用与SRY基因相应的引物,用PCR技术对正常人男女各10例的基因组DNA进行扩增。将特异扩增的男性SRY基因片段重组到质粒PUC12中,得到含有中国人SRY基因片段的克隆,命名为PSY-1、PSY-2。用[~(32)p]标记重组质粒中的SRY基因片段作探针,与PCR结果进行Southern杂交,男性样品均显示特异杂交带,女性样品为阴性。用末端终止法测定克隆的SRY基因片段的全部核苷酸序列为299bp,含有SRY基因中高度保守及功能特异性区域的240bp,我们对此进行了讨论。  相似文献   

12.
13.
Y染色体上的性别决定区域——SRY基因作为睾丸决定因子,可以调控男性性别发育过程。SRY基因是一种转录因子,属于带有高迁移率族蛋白家族,该家族成员包含能与DNA结合的HMG盒基序。已知SRY基因的缺失和点突变是造成XY女性性反转的病因之一。通过筛查10位中国46,XY女性性反转病人SRY基因的开放阅读框区域,探寻新的突变类型。用标准方法从外周血中抽提gDNA,通过聚合酶链式反应扩增SRY基因中部的609bp的DNA片段。扩增后的PCR片段被克隆到pUCm-T载体中,在ABI377-3自动测序仪上完成测序。运用限制性内切酶酶切分析的方法验证DNA测序的结果。结果表明,在两个患者的SRY基因中分别发现了新的核苷酸点突变,并都导致氨基酸替代。一个突变发生在SRY基因的5’端HMG盒外的核苷酸第113位腺嘌呤(A)被鸟嘌呤(G)取代,并导致谷氨酸被甘氨酸替换;另一个突变是第387位核苷酸发生T被A替换,该突变引起第129位的酪氨酸变成终止密码,她父亲的SRY序列被证明是正常的野生型。通过查询文献和人类基因突变数据库(HGMD),这两个突变都是以前未见报道过的新型SRY基因突变,并使因核苷酸替换引起SRY基因突变总数增加到45。  相似文献   

14.
Recently, the gene for the determination of maleness has been identified in the sex-determining region on the short arm of the Y chromosome (SRY) between the Y-chromosomal pseudoautosomal boundary (PABY) and the ZFY gene locus. Experiments with transgenic mice confirmed that SRY is a part of the testis-determining factor (TDF). We describe a sporadic case of a patient with intersexual genitalia and the histological finding of ovotestes in the gonad, which resembles the mixed type of gonadal tissue without primordial follicle structures. The karyotype of the patient was 46,XY. By PCR amplification, we tested for the presence of PABY, SRY, and ZFY by using DNA isolated from peripheral blood leukocytes and for the presence of SRY by using DNA obtained from histological gonadal slices. The SRY products of both DNA preparations were further analyzed by direct sequencing. All three parts of the sex-determining region of the Y chromosome could be amplified from leukocytic DNA. The patient's and the father's SRY sequences were identical with the published sequence. In the SRY PCR product of gonadal DNA, the wild-type and two point mutations were present in the patient's sequence, simulating a heterozygous state of a Y-chromosomal gene: one of the mutations was silent, while the other encoded for a nonconservative amino acid substitution from leucine to histidine. Subcloning procedures showed that the two point mutations always occurred together. The origin of the patient's intersexuality is a postzygotic mutation of the SRY occurring in part of the gonadal tissue. This event caused the loss of the testis-determining function in affected cells.  相似文献   

15.
16.
A gene named SRY, isolated last year from the sex-determining region of the human Y chromosome, satisfies many of the criteria expected of the testis-determining factor gene. Mutations in SRY have been found in XY females, strongly implicating SRY as the testis-determining gene.  相似文献   

17.
18.
Sexual ambiguity can be a difficult and sometimes confusing diagnostic problem in children. Recent developments in molecular biology have provided the opportunity to analyze the gene responsible for testicular determination, SRY, the androgen receptor gene and the gene encoding the cP450 enzyme specific for 21-hydroxylation, CYP21B, whose defects are responsible for congenital adrenal hyperplasia. Southern-blotting studies and PCR analyses of SRY, androgen receptor and CYP21B genes can be routinely used for the direct diagnosis of gonadal dysgenesis, androgen insensitivity syndromes and congenital adrenal hyperplasia, respectively. In sex-reversed XY females, several de novo mutations or deletions in the SRY gene have been reported. Defects in the human androgen receptor cause a spectrum of defects in male phenotypic sexual development associated with abnormalities in the receptor protein. Analyses of the androgen receptor gene structure have identified the causative mutation in some families: mutations that result in large-scale alterations of the structure of the androgen receptor, mRNA or gene mutations that alter the primary structure of the androgen receptor protein and mutations that alter the level of mRNA. The diversity of clinical phenotypes, apparent in 21-hydroxylase deficiency, is paralleled by a considerable degree of mutational heterogeneity in the CYP21 gene locus. Various changes causing severe 21-hydroxylase deficiency have been reported: point mutations, gene conversions and gene deletions. In conclusion, substantial progress has been made elucidating genetic defects causing sex reversal in XY females, the androgen insensitivity syndrome and congenital adrenal hyperplasia. Molecular genetics can also be applied for carrier identification and prenatal diagnosis.  相似文献   

19.
Campomelic dysplasia (Cd) occurs combined with sex reversal resulting in XY females. The recent identification of candidate genes for sex determination/differentiation and of a sex determining region on the human Y chromosome prompted the authors to study these genes for mutations in patients with Cd and sex reversal. In a total of five cases, no evidence for a mutation in the genes SRY, ZFY, ZFX, MEA and some anonymous Y-linked sequences was found. In addition to Southern analysis, gene expression of ZFY, ZFX and MEA was found to be normal as well. It is concluded that sex reversal in this condition is due to mutation in a so far unidentified gene which may act secondary to the testis-determining factor (TDF).  相似文献   

20.
Members of the SOX gene family encode proteins with homology to the HMG box DNA-binding domain of SRY, the Y-linked testis-determining gene. SOX genes are expressed during embryogenesis and are involved in the development of a wide range of different tissues. Mutations in SRY, SOX9 and SOX10 have been shown to be responsible for XY sex reversal, campomelic dysplasia and Waardenburg-Hirschsprung disease, respectively. It is likely that mutations in other SOX genes are responsible for a variety of human genetic diseases. SOX14 has been identified from a human genomic library and the mouse and chicken sequences obtained by polymerase chain reaction amplification. The SOX14 amino acid sequence is highly conserved across these species, suggesting an important role for this protein in vertebrate development. SOX14 is expressed in the neural tube and apical ectodermal ridge of the developing chicken limb. This is the only SOX gene known to be expressed in the apical ectodermal ridge, a structure that directs outgrowth of the embryonic limb bud. Human SOX14 is localised to a 1.15-Mb yeast artificial chromosome on chromosome 3q23, close to loci for BPES (blepharophimosis, ptosis, epicanthus inversus syndrome) and Mobius syndrome. Although SOX14 maps outside these loci, its expression pattern and chromosomal localisation suggest that it is a candidate gene for the limb defects frequently associated with these syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号