首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survey results and genotypic characterization of Escherichia coli strains demonstrate that the bacteriocins colicin Ia and microcin V coassociate in a strain more often than would be expected by chance. When these two bacteriocins co-occur, they are encoded on the same conjugative plasmid. Plasmids encoding colicin Ia and microcin V are nonrandomly distributed with respect to the genomic background of the host strain. Characterization of microcin V and colicin Ia nucleotide variation, together with the backbone of plasmids encoding these bacteriocins, indicates that the association has evolved on multiple occasions and involves the movement of the microcin V operon, together with the genes iroNEDCB and iss, onto a nonrandom subset of colicin Ia plasmids. The fitness advantage conferred on cells encoding both colicin Ia and microcin V has yet to be determined.  相似文献   

2.
A mini-Tn10-kan insertion mutation identified a gene in the chromosome of Escherichia coli required for colicin V production from plasmid pColV-K30. With the complete restriction map of E. coli, the mutation was rapidly mapped to 50.0 min, within the purF operon. Sequence analysis showed that the insertion occurred in a gene with no previously known function which is located directly upstream of purF. We designated this gene cvpA for colicin V production. The mutant requires adenine for growth, probably because of a polar effect on purF expression. However, an adenine auxotroph showed no defect in colicin V production, suggesting that the cvpA mutation is responsible for the effect on colicin V production. Two possible models of cvpA1 allele function are discussed.  相似文献   

3.
A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.  相似文献   

4.
The colicin V production and immunity genes were isolated from plasmid pColV-K30. A HindIII-to-SalI fragment of 9.4 kilobases was cloned into the compatible vectors pBR322 and pACYC184. Mutants defective in colicin production were generated by Tn5 insertions and by constructing deletions in vitro. Physical analysis of these mutations identified a 4.4-kilobase region of this DNA which contains all the plasmid genes (cva) needed for the production of colicin V. The colicin V immunity determinant (cvi) is in a 700-base-pair fragment located within one end of this region. Complementation tests identified three genes, called cvaA, cvaB, and cvaC, required for colicin production. Analysis of the proteins labeled in minicells harboring various Tn5 insertions allowed us to identify protein products for the cvaA and cvaC genes. Mutations in cvaA and cvaB eliminated colicin activity in culture supernatants, but not within the cells. Mutations in cvaC, however, eliminated all detectable activity. From these results we conclude that the cvaC gene codes for the structural gene for colicin V, while cvaA and cvaB are apparently needed for the normal export of the colicin.  相似文献   

5.
Cloning of immunity and structural genes for colicin V   总被引:12,自引:8,他引:4       下载免费PDF全文
The colicin V immunity and structural genes of plasmid pColV-B188 were cloned into the vectors pMB9, pBR322, and pMK16. Both genes are closely linked and can be isolated on a 900-base-pair deoxyribonucleic acid fragment. Insertion of the transposon Tn5 into this cloned sequence led to the construction of a mutant plasmid which conferred colicin V immunity, but not the ability to produce this colicin. Analysis of the products determined by these cloned genes in cells has led to the conclusion that the polypeptide involved in immunity has a molecular weight of about 6,500, whereas the colicin has a molecular weight of approximately 4,000.  相似文献   

6.
The plasma membrane of mammalian cells can mediate the cytotoxic and cytocidal effects of colicin E3. As little as 102 lethal units of purified colicin E3 per cell exert a pronounced cytocidal effect on human epithelial HeLa cells and as little as 104 lethal units per cell also on line L mouse fibroblasts in tissue culture. Cells in complete monolayers are rapidly killed, become spherical and shrink, they are detached from the support and finally autolyzed. The percentage of killed cells in both lines is directly proportional to the multiplicity of colicin used. Theld 50 for HeLa cells is about 30 times lower than for L cells. At the multiplicity of 105 l.u., usually 100 % HeLa cells and 90 % L cells are killed in 2–3 days. Purified colicins E2 and D have no demonstrable cytological effect on HeLa cells, although DNA synthesis in L cells appears to be partly inhibited by colicin E2. The profound effect of colicin E3 on mammalian cells could be interpreted in a similar way as in bacteria,viz. as a specific cleavage of rRNA.  相似文献   

7.
1. Glycerol-grown cells of Escherichia coli and its mutant uncA, treated with colicin E1 or K, exhibited a several-fold higher level of alpha-methylglucoside uptake than untreated cells. This stimulation was independent of the carbon source present during the uptake test. In a mutant strain that has elevated levels of alpha-methylglucoside accumulation the addition of colicin E1 or carbonylcyanide m-chlorophenylhydrazone (CCCP) did not further enhance the uptake. 2. Colicins K and E1 decreased the apparent Km for alpha-methylglucoside uptake significantly and increased the V about twofold. The exit of the glucoside was severely inhibited by the colicins. 3. In the presence of colicins, alpha-methylglucoside is still accumulated via the phosphoenolpyruvate-phosphotransferase system since no accumulation or phosphorylation occurs in an enzyme I mutant. The colicins increased the relative intracellular concentration of phosphorylated alpha-methylglucoside, possibly by inhibiting the dephosphorylation reaction, and caused an excretion of this compound. 4. The results are interpreted as indicating that energization of the membrane has an inhibitory effect on the phosphotransferase system. Possible modes of action are discussed.  相似文献   

8.
Purification and molecular properties of a new colicin.   总被引:6,自引:0,他引:6  
The process of isolation and purification of a new colicin isolated from a Citrobacter strain is described. Escherichia coli sensitive cells are protected by vitamin B12 from the action of this bacteriocin; this suggests that it belongs to the E group of colicins. Therefore, we have called it colicin E4. It has a molecular weight of 56 000 and two molecular forms of isoelectric points 9.4 and 8.2 are separated in electrofocusing on polyacrylamide gels. It has a sedimentation coefficient of 3.4 S and the absorption coefficient A1(280%) nm is 6.23 cm(-1). Using an antibody raised against pure colicin E4, no cross-reaction was detected against colicins A, E1 or K. The physiological effect of colicin E4 on sensitive cells is very similar to that of colicins E1, K or I which disrupt the energized membrane state.  相似文献   

9.
L S Saxe 《Biochemistry》1975,14(10):2051-2057
A lambda DNA supercoil system has been developed to study the effects of colicin E2 on DNA in vivo. Colicin E2, a protein antibiotic synthesized by strains of coliform bacteria that carry the Col E2 plasmid, had as its most conspicious effect damage to the DNA of sensitive strains. Colicine E2 attacks the supercoiled molecul formed by labeled lambda DNA in superinfected cells as well as it attacks the bacterial DNA. The rate and extent of acid solubilization of the lambda supercoils and of host bacterial DNA induced by E2 treatment are nearly identical. Treatment of superinfected cells with colicin E2 results in the progressive conversion of lambda DNA supercoils to open circles and/or linear full lenght molecules, and subsequently to fragments less than full lambda in size. The first endonucleolytic reactions are single-strand and or double-strand breaks. The rate of supercoil breakdown as well as the final percent supercoils remaining unconverted, the size of the final lambda fragments, and the extent of solubilization are dependent on the multiplicity of colicin used. Additions of trypsin to E2-treated superinfected cells results in a cessation of further breakdown of the lambda molecules, presumably as a result of digestion of accessible colicin molecules. Energy is essential for an early event in colicin E2 action. The host enzymes, endonuclease I and Rec BC, may be instrumental in the nucleolytic process caused by colicin E2: endonuclease I in reaction preceding cell killing and Rec BC in a secondary degradation of the bacterial DNA.  相似文献   

10.
Colicinogenic cells are immune to the lethal effect of the colicin which they produce. In the presence of very high concentrations of colicin, however, colicinogenic cells are no longer immune to the homologous colicin. This phenomenon, immunity breakdown, was studied with colicins Ia and Ib. The biochemical effects of colicin Ib on Escherichia coli were studied with a standard noncolicinogenic strain. At multiplicities of about 10 or higher, colicin Ib inhibited incorporation of leucine into protein and incorporation of (32)P-inorganic phosphate into deoxyribonucleic acid and ribonucleic acid by more than 95%. Under the same conditions, (32)P incorporation into phospholipid and nucleotide fractions was inhibited only partially (about 80 and 60%, respectively). Inhibition of (32)P incorporation into the terminal phosphorus of adenosine triphosphate was also considerably less than that of macromolecular synthesis (50 to 60%). (32)P incorporation into the nonnucleotide organic phosphate fraction was not inhibited. Respiration was not affected. Colicin Ia showed the same biochemical effects as colicin Ib. A mutant of an Ib-colicinogenic E. coli strain selected for resistance to low concentrations of colicin Ia was shown to be resistant to high concentrations of homologous colicin Ib, whereas the parent Ib-colicinogenic strain is sensitive to high concentrations of colicin Ib. This mutant lost its specific receptors for colicin Ib. Moreover, the biochemical effects of high concentrations of colicin Ib on Ib-colicinogenic cells during immunity breakdown were similar to the effects found in sensitive cells exposed to low concentrations of the same colicin. It is concluded that the killing of colicinogenic cells in the presence of high concentrations of homologous colicin is indeed caused by the homologous colicin molecules.  相似文献   

11.
The addition of the pore forming colicin A to Escherichia coli cells results in an efflux of cytoplasmic potassium. This efflux is preceded by a lag time which is related to the time needed for the translocation of the toxin through the envelope. Denaturing the colicin A with urea, before adding it to the cells, did not affect the properties of the pore but decreased the lag time. After renaturation, the lag time was similar to that of the native colicin. This suggests that the unfolding of colicin A accelerates its translocation. The addition of trypsin, which has access neither to the periplasmic space nor to the cytoplasmic membrane, resulted in an immediate arrest of the potassium efflux induced by colicins A and B. The possibility that trypsin may act on a bacterial component required for colicin reception and/or translocation was ruled out. It is thus likely that the arrest of the efflux corresponds to a closing of the pores. This long distance effect of trypsin suggests that part of the polypeptide chain of the colicins may still be in contact with the external medium even when the pore has formed in the inner membrane.  相似文献   

12.
T Chai  V Wu    J Foulds 《Journal of bacteriology》1982,151(2):983-988
ompF cells were completely resistant to colicin A, whereas btuB cells were partially resistant. The OmpF protein, in the presence of added lipopolysaccharide, inactivated colicin A. This inactivation was enhanced by added btuB gene product, btuB gene product with lipopolysaccharide did not inactivate colicin A. These data, together with the observation that vitamin B12 protected btuB+ cells from the killing effect of colicin A, suggest that the colicin A receptor in Escherichia coli K-12 is composed of the OmpF protein, the btuB gene product, and lipopolysaccharide.  相似文献   

13.
The purpose of this work was in investigate the capability of cell extracts of Escherichia coli and E. coli treated with colicin K to catalyze the following energy-dependent reverse transhydrogenase reaction: NADP + NADH + ATP in equilibrium NADPH + NAD +ADP + Pi. Under anaerobic conditions this reaction requires the presence of a specific portion of the electron transport chain, a functional energy coupling system, including an adenosine triphosphatase, enzyme, and ATP as energy source. The ATP-linked reaction was partially inhibited in French press extracts of E. coli K-12 C600 cells that had been pretreated with colicin K but not in extracts from similarly treated cells of a colicin-tolerant mutant. Ultracentrifugation of extracts yielded particulate fractions competent in catalyzing the reaction; this reaction is substantially inhibited in fractions from colicin-treated cells. The extent of inhibition increased with increasing concentration of colicin. Supernatants also supported ATP-linked formation of NADPH, but this reaction was insensitive to the colicin effect. A comparison between the requirement of the reaction in supernatant and particulate fractions suggests that the reaction in the supernatant is different from the one inhibited by colicin. The ATP-hydrolyzing ability of particulate fractions from the control or treated bacteria was identical. Likewise, the electron transport chain was not affected by colicin treatment, as evidenced from lack of effect on NADH oxidase, succinic dehydrogenase, and NADPH-NAD transhydrogenase. It is concluded that colicin K interferes with the coupling of ATP the utilization of the intermediate for the ATP-linked transdehydrogenase reaction.  相似文献   

14.
Pore-forming colicins exert their lethal effect on E coli through formation of a voltage-dependent channel in the inner (cytoplasmic-membrane) thus destroying the energy potential of sensitive cells. Their mode of action appears to involve 3 steps: i) binding to a specific receptor located in the outer membrane; ii) translocation across this membrane; iii) insertion into the inner membrane. Colicin A has been used as a prototype of pore-forming colicins. In this review, the 3 functional domains of colicin A respectively involved in receptor binding, translocation and pore formation, are defined. The components of sensitive cells implicated in colicin uptake and their interactions with the various colicin A domains are described. The 3-dimensional structure of the pore-forming domain of colicin A has been determined recently. This structure suggests a model of insertion into the cytoplasmic membrane which is supported by model membrane studies. The role of the membrane potential in channel functioning is also discussed.  相似文献   

15.
A new class of colicin sensitivity mutants of Escherichia coli was isolated whose cell division was specifically inhibited by colicin E(2) without detectable degradation of deoxyribonucleic acid (DNA) at 30 C. The mutant could not form colonies in the presence of colicin E(2) but recovered colony-forming ability by trypsin treatment even after prolonged incubation with the colicin. Addition of colicin E(2) to the exponentially growing mutant inhibited cell division completely but did not induce degradation of DNA into cold acid-soluble materials nor any breakage of DNA strands. Synthesis of DNA in the mutant was not inhibited, and long filamentous cells with multiple nuclear bodies were formed by the action of colicin E(2). Degradation of ribosomal ribonucleic acid and development of prophage lambda, both of which were induced by colicin E(2) in the sensitive cells, did not occur in the mutant. At the elevated temperature, however, the mutant was found to undergo colicin-induced degradation of DNA. No differences in ultraviolet light nor drug sensitivities were observed in the mutant compared to the parent E. coli. The data suggested that colicin E(2) had a specific inhibitory effect on cell division of E. coli that was not a consequence of DNA degradation.  相似文献   

16.
In recent years, a possible relationship between pathogenicity and colicinogeny in some Escherichia coli colicin V-producing strains had been inferred. In our laboratory, we have elaborated a simple in vitro method for the production of colicin V free of large, non dialyzable macromolecules and presumably of bacterial endotoxin. This allows study of the effects of colicin V in vivo without an undesirable added physiological response of the experimental animal to endotoxin. All the Col V+ strains we have studied displayed a greater ability to survive in the peritoneal cavity of mice than the Col V- strains. Also, we have detected colicin V in peritoneal fluids of agonizing mice injected with Col V+ strains. Phagocytosis by peritoneal macrophages seemed to be inhibited in vitro in the presence of colicin V. Colicin V is not toxic in vivo in low concentration, after intraperitoneal or intravenous injection but it may favor the multiplication and the invasiveness of the strains that produce it.  相似文献   

17.
Mechanism of export of colicin E1 and colicin E3.   总被引:10,自引:5,他引:5       下载免费PDF全文
The mechanism of export of colicins E1 and E3 was examined. Neither colicin E1, colicin E3, Nor colicin E3 immunity protein appears to be synthesized as a precursor protein with an amino-terminal extension. Instead, the colicins, as well as the colicin E3 immunity protein, appear to leave the cells where they are made, long after their synthesis, by a nonspecific mechanism which results in increased permeability of the producing cells. Induction of ColE3-containing cells with mitomycin C leads to actual lysis of those cells, as some time after synthesis of the colicin E3 and its immunity protein has been completed. Induction of ColE1-containing cells results in increased permeability of the cells, but not in actual lysis, and most of the colicin E1 produced never leaves the producing cells. Intracellular proteins such as elongation factor G can be found outside of colicinogenic cells after mitomycin C induction, along with the colicin. Until substantial increases in permeability occur, most of the colicin remains cell associated, in the soluble cytosol, rather than in a membrane-associated form.  相似文献   

18.
Pentachlorophenol (PCP)-sensitive incorporation of (32)P-labeled orthophosphate ((32)P(i)) into nucleotides and nucleic acids by disrupted spheroplasts of Escherichia coli was inhibited by addition of colicin K. Incorporation by intact cells was also inhibited by a similar concentration of colicin K. Various colicin K-resistant mutants were isolated, and their ability to incorporate (32)P(i) was tested. When T6(r)-colK(r) mutants (T6 phage-resistant) and tol I mutants (T6-sensitive, colicin E-sensitive) were converted to disrupted spheroplasts, their (32)P(i)-incorporation became sensitive to colicin K. On the contrary, incorporation by disrupted spheroplasts from tol II mutants (T6-sensitive, colicin E-resistant) was fairly resistant to colicin K like that of intact cells. A modification of the cell surface of T6(r)-colK(r) mutants, caused by mutation to novobiocin-permeable, T4 phage-resistant cells, restored the sensitivity of the cells to colicin K. The modified T6(r)-colK(r) cells did not adsorb T6 phage or colicin K, indicating that the receptors for T6 phage or colicin K are not reactivated by this modification. Similar treatment of tol I mutants did not have this effect. These observations strongly suggest that colicin K can act on its target on the cell membrane if it can penetrate the cell surface to reach this target. The receptor for colicin K on the cell surface, which may be part of the T6 phage-receptor, may have some unknown function in relation to the action of colicin K in normal cells, but tends to become dispensable if the cells become permeable to colicin K.  相似文献   

19.
Summary The colicin M structural gene, cma, was subcloned in a vector which allowed temperature-inducible control of its expression. Induction of expression of cma in colicin M uptake proficient strains was lethal for the host cell when the colicin M immunity protein was not present. In liquid culture cells lysed, and no colonies were formed on solid media. These effects were not observed in mutants defective in the colicin receptor (FhuA) or uptake functions (TonB, TolM), nor in wild-type cells treated with trypsin prior to induction of cma expression. It was concluded that cytoplasmic colicin M is not toxic for the producing cell. To exert a lethal effect the colicin has to enter the cell from outside. Cells expressing cma released small amounts of colicin M.  相似文献   

20.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号