首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kawai F 《Biophysical journal》2002,82(4):2005-2015
The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation.  相似文献   

2.
Imanaka Y  Takeuchi H 《Chemical senses》2001,26(8):1023-1027
The whole-cell, patch clamp [corrected] method was applied to olfactory receptor cells in slice preparations made from bullfrog olfactory epithelium. Under voltage-clamp conditions, olfactory receptor cells showed a transient inward current followed by a steady outward current in response to depolarizing voltage steps, as has been shown in the isolated preparation. The input resistance was 5.4 +/- 3.9 GOmega and capacitance 21.9 +/- 9.7 pF. Under current-clamp conditions, depolarization of cells by current injection induced action potentials. In 13 out of 20, spike generation was repetitive with a maximum frequency of 24 Hz. The frequency of the repetitive discharges increased as the injected current was increased. The relationship between the size of the injected current and firing frequency could be well fitted by the Michaelis-Menten equation, indicating that the spike generation site lacks the non-linear boosting system. The slice preparation developed here would provide a powerful tool to study the spike encoding system of the olfactory receptor cells.  相似文献   

3.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

4.
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D-glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442-444). The forskolin-stimulated spike rate decreased when l-cis-diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4-aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.  相似文献   

5.
Protein kinase C sensitizes olfactory adenylate cyclase   总被引:3,自引:1,他引:2  
Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory sensitivity.  相似文献   

6.
Rat olfactory receptor neurons were enzymatically dissociated and studied with the cell-attached configuration of the patch-clamp technique. Biphasic current waveforms induced across the membrane patch by intracellular action potentials were observed in approximately 5% of cells studied. In one cell in particular, current injected by the opening of a single channel initiated an action potential in the remainder of the cell each time the channel opened. A conventional type of electrical model of the cell and patch allowed the accurate modeling of cell excitability. The same model was used to explain the shape of the action potential current waveforms induced across the patch. The analysis indicated that the whole cell resistance (Ro) was approximately 40 G omega and the membrane capacitance (Co) was close to the standard value of 1 microF.cm-2. In addition, the threshold potential change necessary to initiate an action potential (Vth) was approximately 13 mV and a minimum current injection of 1 pA was required to depolarize the cell to spike threshold. When the smaller size of mammalian receptors are taken into account, membrane electrical properties were found to be consistent with those of salamander cells investigated by others using whole-cell recording. The analysis also revealed possible errors in the determination of single-channel conductances and reversal potentials by cell-attached recording from small cells.  相似文献   

7.
1. The metabolic interactions between glucose, acetoacetate and adrenaline were studied in submaxillary-gland slices. 2. Acetoacetate (2.5 mM) inhibited glucose removal by 22% and entry of glucose carbon into the tricarboxylic acid cycle by 54%. 3. Acetoacetate caused an increase in (glucose 6-phosphate) together with an increase in (citrate), a finding that suggests that the phosphofructokinase step might be inhibited by the elevated (citrate). Support for this suggestion was obtained in experiments in which fluoracetate was used to elevate (citrate). 4. A further site of action of acetoacetate at the pyruvate dehydrogenase step was suggested by an increase in the lactate+pyruvate pool, and the finding that pyruvate removal and (3-14C)pyruvate oxidation were inhibited by acetoacetate. 5. Adrenaline, a stimulator of secretion by this tissue, increased glucose removal by 25%. Adrenaline increased glucose removal to the same extent when acetoacetate was also present in the incubation medium. In both cases the increase was accompanied by a fall in (glucose 6-phosphate). 6. Adrenaline also overcame the inhibition of pyruvate removal caused by acetoacetate. 7. The tissue (ATP) decreased by about 50% on addition of adrenaline, and a similar fall was observed in vivo after adrenergic stimulation by isoproterenol. 8. Omission of Ca-2+ from the medium prevented the fall in (glucose 6-phosphate) and (ATP) caused by adrenaline, although adrenaline was still able to stimulate glucose removal. The inhibitory effect of acetoacetate on gluocse removal was reversed by adrenaline, but there was no stimulation above the control rates. Inhibition of pyruvate removal by acetoacetate was not overcome by adrenaline in the absence of Ca-2+. 9. Dibutyryl cyclic AMP had no effect on glucose removal or on (ATP). 10. Possible mechanisms by which adrenaline can bring about its metabolic effects are discussed.  相似文献   

8.
Wong HP  Ho JW  Koo MW  Yu L  Wu WK  Lam EK  Tai EK  Ko JK  Shin VY  Chu KM  Cho CH 《Life sciences》2011,88(25-26):1108-1112
AimsStress has been implicated in the development of cancers. Adrenaline levels are increased in response to stress. The effects of adrenaline on colon cancer are largely unknown. The aims of the study are to determine the effects of adrenaline in human colon adenocarcinoma HT-29 cells and the possible underlying mechanisms involved.Main methodsThe effect of adrenaline on HT-29 cell proliferation was determined by [3H] thymidine incorporation assay. Expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) were detected by Western blot. Matrix metalloproteinase-9 (MMP-9) activity and prostaglandin E2 (PGE2) release were determined by zymography and enzyme immunoassay, respectively.Key findingsAdrenaline stimulated HT-29 cell proliferation. This was accompanied by the enhanced expression of COX-2 and VEGF in HT-29 cells. Adrenaline also upregulated MMP-9 activity and PGE2 release. Adrenaline stimulated HT-29 cell proliferation which was reversed by COX-2 inhibitor sc-236. COX-2 inhibitor also reverted the action of adrenaline on VEGF expression and MMP-9 activity. Further study was performed to determine the involvement of β-adrenoceptors. The stimulatory action of adrenaline on colon cancer growth was blocked by atenolol and ICI 118,551, a β1- and β2-selective antagonist, respectively. This signified the role of β-adrenoceptors in this process. In addition, both antagonists also abrogated the stimulating actions of adrenaline on COX-2, VEGF expression, MMP-9 activity and PGE2 release in HT-29 cells.SignificanceThese results suggest that adrenaline stimulates cell proliferation of HT-29 cells via both β1- and β2-adrenoceptors by a COX-2 dependent pathway.  相似文献   

9.
Isolated vagal-innervated rabbit atria are electrically driven. Alterations of action potential, contraction, and electrotropic and inotropic vagal effects are investigated during variations of the external potassium concentration. Action potential area and contraction amplitude decrease by increasing external potassium concentration. If the potassium concentration is higher than 11 mM, the action potential disappears. At 24 mM potassium concentration the contraction amplitude of the driven atrium is reduced to 2%. Adrenaline (2.10(-5) g/ml) causes a restitution of the action potential and the contraction. With increasing potassium concentration the inotropic and the electrotropic vagal effectivity increases also. The vagal effects at the adrenaline restituted action potentials and contractions (15 mM potassium, 2.10(-5) g/ml adrenaline) are also higher than in normal solutions. The relations of electromechanical coupling are altered by potassium variation at the same coupling curve. With increasing potassium concentration the reproducibility of the vagal effects decreases.  相似文献   

10.
Using the whole-cell mode of the patch-clamp technique, we recorded action potentials, voltage-activated cationic currents, and inward currents in response to water-soluble and volatile odorants from receptor neurons in the lateral diverticulum (water nose) of the olfactory sensory epithelium of Xenopus laevis. The resting membrane potential was -46.5 +/- 1.2 mV (mean +/- SEM, n = 68), and a current injection of 1-3 pA induced overshooting action potentials. Under voltage-clamp conditions, a voltage-dependent Na+ inward current, a sustained outward K+ current, and a Ca2+-activated K+ current were identified. Application of an amino acid cocktail induced inward currents in 32 of 238 olfactory neurons in the lateral diverticulum under voltage-clamp conditions. Application of volatile odorant cocktails also induced current responses in 23 of 238 olfactory neurons. These results suggest that the olfactory neurons respond to both water-soluble and volatile odorants. The application of alanine or arginine induced inward currents in a dose-dependent manner. More than 50% of the single olfactory neurons responded to multiple types of amino acids, including acidic, neutral, and basic amino acids applied at 100 microM or 1 mM. These results suggest that olfactory neurons in the lateral diverticulum have receptors for amino acids and volatile odorants.  相似文献   

11.
The interactions between electrical polarizations of the olfactory epithelium and odour stimulations were investigated at the level of the extracellular spike activity of the receptor cells in the frog. 1. In most cases, surface positive polarizations enhanced the excitatory olfactory responses, negative polarizations suppressed these responses; both interactive effects were graded. 2. The response of receptor cells to electrical polarization was markedly reduced or suppressed for several seconds following olfactory stimulation. This effect and the time course of the recovery period depended on the nature and the concentration of the olfactory stimulus. 3. The decrease in electrical excitability seemed to be independent of whether the recorded neuron had responded or not to the prior olfactory stimulation. 4. It is suggested that the olfactory stimulation caused the total constant current to change its distribution in the different cell pathways. Changes in conductance induced by olfactory stimuli could implicate the supporting cells. 5. The experimental findings are discussed with reference to a model of receptor cell function that assumes a deep, axo-somatic localization of the action potential trigger-zone.  相似文献   

12.
We studied the action of the alpha 2 adrenergic agonist adrenaline on the platelet responses evoked by the activation of protein kinase C or by the ionophore induced increase of cytosolic Ca2+. Both the phorbol ester and ionomycin-induced aggregation are strongly potentiated by adrenaline which per se does not behave as an activating agonist. The potentiation by adrenaline is observed both when added before and after the aggregating agent; in the latter case the effect increases on increasing the delay of adrenaline addition. Adrenaline also reverses the inhibition by cAMP of the PMA (or ionomycin) induced aggregation. It also has a strong potentiating effect (over 100%) on the phorbol ester induced ATP secretion and a weaker effect on the secretion induced by ionomycin. The effect on secretion is visible only when adrenaline is added prior to the stimulus. The inhibition by cAMP of the PMA or ionomycin induced secretion is also counteracted by adrenaline. In no case adrenaline modifies the pattern of platelet phosphoproteins. Ionomycin induces some platelet aggregation also in the presence of the protein kinase inhibitor staurosporine; also this phosphoprotein independent aggregation is strongly stimulated by adrenaline.  相似文献   

13.
Murphy GJ  Rieke F 《Neuron》2006,52(3):511-524
Visual, auditory, somatosensory, and olfactory stimuli generate temporally precise patterns of action potentials (spikes). It is unclear, however, how the precision of spike generation relates to the pattern and variability of synaptic input elicited by physiological stimuli. We determined how synaptic conductances evoked by light stimuli that activate the rod bipolar pathway control spike generation in three identified types of mouse retinal ganglion cells (RGCs). The relative amplitude, timing, and impact of excitatory and inhibitory input differed dramatically between On and Off RGCs. Spikes evoked by repeated somatic injection of identical light-evoked synaptic conductances were more temporally precise than those evoked by light. However, the precision of spikes evoked by conductances that varied from trial to trial was similar to that of light-evoked spikes. Thus, the rod bipolar pathway modulates different RGCs via unique combinations of synaptic input, and RGC temporal variability reflects variability in the input this circuit provides.  相似文献   

14.
The uptake and utilization of [1-14C]glycerol was determined in pieces of rat epididymal fat-pads incubated in Krebs--Ringer bicarbonate buffer containing albumin. Insulin (200 muunits/ml), adrenaline (epinephrine; 0.5 mug/ml) and glucose (0, 5, 15 and 20 mM) were added to the medium. Changes in the specific radioactivity of the tracer during the incubation were taken into account in calculating the rate of glycerol utilization. Adrenaline decreased glycerol uptake, whereas insulin plus adrenaline increased it. The rate of incorporation of glycerol into glycerides was decreased by adrenaline and insulin, singly or together. Insulin increased the rate of formation of CO2 and fatty acids from glycerol. The formation of CO2 and fatty acids was further enhanced by insulin plus adrenaline. The decrease in glycerol uptake induced by adrenaline, the decrease in incorporation of glycerol into glycerides induced by insulin and insulin plus adrenaline and the synthesis of fatty acids were dependent on the presence of glucose in the medium. Thus insulin and adrenaline act on glycerol utilization in adipose tissue and some of their effects are mediated by action on glucose metabolism, but others are independent of this.  相似文献   

15.
Odorant receptors activated by amino acids were investigated with patch- clamp techniques in olfactory receptor neurons of the channel catfish, Ictalurus punctatus. The L-isomers of alanine, norvaline, arginine, and glutamate, known to act predominantly on different olfactory receptor sites, activated nondesensitizing inward currents with amplitudes of - 2.5 to -280 pA in olfactory neurons voltage-clamped at membrane potentials of -72 or -82 mV. Different amino acids were shown to induce responses in the same sensory neurons; however, the amplitude and the kinetics of the observed whole cell currents differed among the stimuli and may therefore reflect activation of different amino acid receptor types or combinations of receptor types in these cells. Amino acid- induced currents appeared to have diverse voltage dependence and could also be classified according to the amplitude of the spontaneous channel fluctuations underlying the macroscopic currents. A mean single- channel conductance (gamma) of 360 fS was estimated from small noise whole-cell currents evoked by arginine within the same olfactory neuron in which a mean gamma value of 23.6 pS was estimated from ''large noise'' response to norvaline. Quiescent olfactory neurons fired bursts of action potentials in response to either amino acid stimulation or application of 8-Br-cyclic GMP (100 microM), and voltage-gated channels underlying generation of action potentials were similar in these neurons. However, in whole-cell voltage-clamp, 8-Br-cyclic GMP evoked large rectangular current pulses, and single-channel conductances of 275, 220, and 110 pS were obtained from the discrete current levels. These results suggest that in addition to the cyclic nucleotide-gated transduction channels, olfactory neurons of the channel catfish possess a variety of odor receptors coupled to different types of transduction channels.  相似文献   

16.
Spontaneous velocity sedimentation of B lymphocytes activated by intraperitoneal injection of ovalbumin into mice was used to obtain cell cycle synchronized cells, evidenced by differences in the incorporation of labeled precursors of protein and nucleic synthesis (14C-methionine and 3H-thymidine). The effects of acetylcholine and adrenaline, cAMP and cGMP on the intensity of 3H-thymidine incorporation into mouse B lymphocytes and on the amount of the cells entering mitosis were examined. It was shown that acetylcholine is capable of stimulating whereas adrenaline of inhibitin B lymphocyte entry into the stage of DNA synthesis and egress of these cells from the stage of DNA synthesis to the stage of mitosis. Adrenaline was found to have a reciprocal action. The acetylcholine effect could be mimetized by exogenous cGMP, that of adrenaline by cAMP. Stimulation of the G1/S transition was mediated by intracellular calcium ions but did not depend on exocellular calcium.  相似文献   

17.
We made a computational model of a single neuron to study the effect of the small conductance (SK) Ca2+-dependent K+ channel on spike frequency adaptation. The model neuron comprised a Na+ conductance, a Ca2+ conductance, and two Ca2+-independent K+ conductances, as well as a small and a large (BK) Ca2+-activated K+ conductance, a Ca2+ pump, and mechanisms for Ca2+ buffering and diffusion. Sustained current injection that simulated synaptic input resulted in a train of action potentials (APs) which in the absence of the SK conductance showed very little adaptation with time. The transfer function of the neuron was nearly linear, i.e., both asymptotic spike rate as well as the intracellular free Ca2+ concentration ([Ca2+]i) were approximately linear functions of the input current. Adding an SK conductance with a steep nonlinear dependence on [Ca2+]i (. Pflügers Arch. 422:223-232; K?hler, Hirschberg, Bond, Kinzie, Marrion, Maylie, and Adelman. 1996. Science. 273:1709-1714) caused a marked time-dependent spike frequency adaptation and changed the transfer function of the neuron from linear to logarithmic. Moreover, the input range the neuron responded to with regular spiking increased by a factor of 2.2. These results can be explained by a shunt of the cell resistance caused by the activation of the SK conductance. It might turn out that the logarithmic relationships between the stimuli of some modalities (e.g., sound or light) and the perception of the stimulus intensity (Fechner's law) have a cellular basis in the involvement of SK conductances in the processing of these stimuli.  相似文献   

18.
Identified wind-sensitive giant interneurons in the cricket's cercal sensory system integrate cercal afferent signals and release an avoidance behavior. A calcium-imaging technique was applied to the giant interneurons to examine the presence of the voltage-dependent Ca(2+) channels (VDCCs) in their dendrites. We found that presynaptic stimuli to the cercal sensory nerve cords elevated the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the dendrites of the giant interneurons. The dendritic Ca(2+) rise coincided with the spike burst of the giant interneurons, and the rate of Ca(2+) rise depended on the frequency of the action potentials. These results suggest that the action potentials directly caused [Ca(2+)](i) increase. Observation of the [Ca(2+)](i) elevation induced by depolarizing current injection demonstrates the presence of the VDCCs in the dendrites. Although hyperpolarizing current injection into the giant interneuron suppressed action potential generation, EPSPs could induce no [Ca(2+)](i) increase. This result means that ligand-gated channels do not contribute to the synaptically stimulated Ca(2+) elevation. On the other hand, antidromically stimulated spikes also increased [Ca(2+)](i) in all cellular regions including the dendrites. And bath application of a mixture of Ni(2+), Co(2+), and Cd(2+) or tetrodotoxin inhibited the [Ca(2+)](i) elevation induced by the antidromic stimulation. From these findings, we suppose that the axonal spikes antidromically propagate and induce the Ca(2+) influx via VDCCs in the dendrites. The spike-dependent Ca(2+) elevation may regulate the sensory signals processing via second-messenger cascades in the giant interneurons.  相似文献   

19.
1. The effects of paraoxon were studied on spike initiation and conduction in the giant interneurons (GIs) of the American cockroach, using electrophysiological techniques. 2. Paraoxon treatment induced high-frequency bursts in GI axons. During these bursts, overshooting spikes recorded in the sixth abdominal ganglion were replaced, in phase, by small, decremental potentials. 3. These small potentials were not EPSPs since current injection could modulate their frequency. 4. An analysis of anteriorly conducted spikes indicates that the site of spike initiation is located near the dendritic region of the GI and is unchanged by paraoxon treatment.  相似文献   

20.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号