首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.  相似文献   

2.
The NS1 proteins of influenza A and B viruses (A/NS1 and B/NS1 proteins) have only approximately 20% amino acid sequence identity. Nevertheless, these proteins show several functional similarities, such as their ability to bind to the same RNA targets and to inhibit the activation of protein kinase R in vitro. A critical function of the A/NS1 protein is the inhibition of synthesis of alpha/beta interferon (IFN-alpha/beta) during viral infection. Recently, it was also found that the B/NS1 protein inhibits IFN-alpha/beta synthesis in virus-infected cells. We have now found that the expression of the B/NS1 protein complements the growth of an influenza A virus with A/NS1 deleted. Expression of the full-length B/NS1 protein (281 amino acids), as well as either its N-terminal RNA-binding domain (amino acids 1 to 93) or C-terminal domain (amino acids 94 to 281), in the absence of any other influenza B virus proteins resulted in the inhibition of IRF-3 nuclear translocation and IFN-beta promoter activation. A mutational analysis of the truncated B/NS1(1-93) protein showed that RNA-binding activity correlated with IFN-beta promoter inhibition. In addition, a recombinant influenza B virus with NS1 deleted induces higher levels of IRF-3 activation, as determined by its nuclear translocation, and of IFN-alpha/beta synthesis than wild-type influenza B virus. Our results support the hypothesis that the NS1 protein of influenza B virus plays an important role in antagonizing the IRF-3- and IFN-induced antiviral host responses to virus infection.  相似文献   

3.
Rho J  Choi S  Seong YR  Choi J  Im DS 《Journal of virology》2001,75(17):8031-8044
The NS3 protein of hepatitis C virus (HCV) contains protease and RNA helicase activities, both of which are likely to be essential for HCV propagation. An arginine residue present in the arginine-glycine (RG)-rich region of many RNA-binding proteins is posttranslationally methylated by protein arginine methyltransferases (PRMTs). Amino acid sequence analysis revealed that the NS3 protein contains seven RG motifs, including two potential RG motifs in the 1486-QRRGRTGRG-1494 motif IV of the RNA helicase domain, in which arginines are potentially methylated by PRMTs. Indeed, we found that the full-length NS3 protein is arginine methylated in vivo. The full-length NS3 protein and the NS3 RNA helicase domain were methylated by a crude human cell extract. The purified PRMT1 methylated the full-length NS3 and the RNA helicase domain, but not the NS3 protease domain. The NS3 helicase bound specifically and comigrated with PRMT1 in vitro. Mutational analyses indicate that the Arg(1493) in the QRR(1488)GRTGR(1493)G region of the NS3 RNA helicase is essential for NS3 protein methylation and that Arg(1488) is likely methylated. NS3 protein methylation by the PRMT1 was decreased in the presence of homoribopolymers, suggesting that the arginine-rich motif IV is involved in RNA binding. The results suggest that an arginine residue(s) in QRXGRXGR motif IV conserved in the virus-encoded RNA helicases can be posttranslationally methylated by the PRMT1.  相似文献   

4.
The nonstructural protein 3 (NS3) of the hepatitis C virus (HCV) is a bifunctional protein with protease and helicase activities. Nonstructural protein 4A (NS4A) is preceded by NS3 and augments the proteolytic activity of NS3 through protein-protein interaction. The central domain of NS4A has been shown to be sufficient for the enhancement of the NS3 protease activity. However, investigations on the roles of the N-terminal and the C-terminal regions of NS4A have been hampered by the difficulty of purification of full-length NS4A, a polypeptide that contains highly hydrophobic amino acid residues. Here we report a procedure by which one can produce and purify an active, full-length NS4A using maltose-binding protein fusion method. The full-length NS4A fused to the maltose binding protein is soluble and maintains its NS3 protease-enhancing activity.  相似文献   

5.
Non-structural protein 1 from influenza A virus, NS1A, is a key multifunctional virulence factor composed of two domains: an N-terminal double-stranded RNA (dsRNA)-binding domain and a C-terminal effector domain (ED). Isolated RNA-binding and effector domains of NS1A both exist as homodimers in solution. Despite recent crystal structures of isolated ED and full-length NS1A proteins from different influenza virus strains, controversy remains over the actual biologically relevant ED dimer interface. Here, we report the biophysical properties of the NS1A ED from H3N2 influenza A/Udorn/307/1972 (Ud) virus in solution. Several lines of evidence, including (15)N NMR relaxation, NMR chemical shift perturbations, static light scattering, and analytical sedimentation equilibrium, demonstrate that Ud NS1A ED forms a relatively weak dimer in solution (K(d) = 90 ± 2 μm), featuring a symmetric helix-helix dimer interface. Mutations within and near this interface completely abolish dimerization, whereas mutations consistent with other proposed ED dimer interfaces have no effect on dimer formation. In addition, the critical Trp-187 residue in this interface serves as a sensitive NMR spectroscopic marker for the concentration-dependent dimerization of NS1A ED in solution. Finally, dynamic light scattering and gel shift binding experiments demonstrate that the ED interface plays a role in both the oligomerization and the dsRNA binding properties of the full-length NS1A protein. In particular, mutation of the critical tryptophan in the ED interface substantially reduces the propensity of full-length NS1A from different strains to oligomerize and results in a reduction in dsRNA binding affinity for full-length NS1A.  相似文献   

6.
7.
8.
The RNA-binding/dimerization domain of the NS1 protein of influenza A virus (73 amino acids in length) exhibits a novel dimeric six-helical fold. It is not known how this domain binds to its specific RNA targets, one of which is double-stranded RNA. To elucidate the mode of RNA binding, we introduced single alanine replacements into the NS1 RNA-binding domain at specific positions in the three-dimensional structure. Our results indicate that the dimer structure is essential for RNA binding, because any alanine replacement that causes disruption of the dimer also leads to the loss of RNA-binding activity. Surprisingly, the arginine side chain at position 38, which is in the second helix of each monomer, is the only amino-acid side chain that is absolutely required only for RNA binding and not for dimerization, indicating that this side chain probably interacts directly with the RNA target. This interaction is primarily electrostatic, because replacement of this arginine with lysine had no effect on RNA binding. A second basic amino acid, the lysine at position 41, which is also in helix 2, makes a strong contribution to the affinity of binding. We conclude that helix 2 and helix 2', which are antiparallel and next to each other in the dimer conformation, constitute the interaction face between the NS1 RNA-binding domain and its RNA targets, and that the arginine side chain at position 38 and possibly the lysine side chain at position 41 in each of these antiparallel helices contact the phosphate backbone of the RNA target.  相似文献   

9.
RNA-binding proteins of bovine rotavirus.   总被引:14,自引:9,他引:14       下载免费PDF全文
  相似文献   

10.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.  相似文献   

11.
Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-beta) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-beta production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.  相似文献   

12.
The nonstructural protein 3 (NS3) of hepatitis C virus contains a protease domain at its amino terminus and RNA helicase domain at its carboxyl terminus. To identify optimal NS3 protein for developing screening assays, we expressed full-length NS3 protease/helicase and helicase domains from both HCV type 1a (H77 strain) and 1b (Con1 strain), using either E. coli or baculovirus expression systems. Our studies showed that the full-length NS3 proteins, either with or without the presence of the NS4A domain, from either strains were at least 10-fold more efficient than the corresponding helicase domains in unwinding partial duplex RNA substrates. These findings provide a rationale for the use of full-length NS3 in high throughput screening assays to identify potent small molecule inhibitors of this important target of HCV.  相似文献   

13.
14.
The Guanine-rich RNA sequence binding factor 1 (GRSF1) is a member of the heterogeneous nuclear ribonucleoprotein F/H family and has been implicated in RNA processing, RNA transport and translational regulation. Amino acid alignments and homology modeling suggested the existence of three distinct RNA-binding domains and two auxiliary domains. Unfortunately, little is known about the molecular details of GRSF1/RNA interactions. To explore the RNA-binding mechanisms we first expressed full-length human GRSF1 and several truncation mutants, which include the three separated qRRM domains in E. coli, purified the recombinant proteins and quantified their RNA-binding affinity by RNA electrophoretic mobility shift assays. The expression levels varied between 1 and 10 mg purified protein per L bacterial liquid culture and for full-length human GRSF1 a binding constant (KD-value) of 0.5 μM was determined. In addition, our mechanistic experiments with different truncation mutants allowed the following conclusions: i) Deletion of either of the three RNA-binding domains impaired the RNA-binding affinity suggesting that the simultaneous presence of the three domains is essential for high-affinity RNA-binding. ii) Deletion of the Ala-rich auxiliary domain did hardly affect RNA-binding. Thus, this structural subunit may not be involved in RNA interaction. iii) Deletion of the acidic auxiliary domain improved the RNA-binding suggesting a regulatory role for this structural motif. iv) The isolated RNA-binding domains did not exhibit sizeable RNA-binding affinities. Taken together these data suggest that a cooperative interaction of the three qRRMs is required for high affinity RNA-binding.  相似文献   

15.
In this work we show for the first time that the overproduced N-terminal fragment (residues 1-91) of ribosomal protein TL5 binds specifically to 5S rRNA and that the region of this fragment containing residues 80-91 is a necessity for its RNA-binding activity. The fragment of Escherichia coli 5S rRNA protected by TL5 against RNase A hydrolysis was isolated and sequenced. This 39 nucleotides fragment contains loop E and helices IV and V of 5S rRNA. The isolated RNA fragment forms stable complexes with TL5 and its N-terminal domain. Crystals of TL5 in complex with the RNA fragment diffracting to 2.75 A resolution were obtained.  相似文献   

16.
17.
We used yeast three-hybrid system, for studying interaction of alfalfa mosaic virus coat protein AMVCP (AMVCP) with RNA4, which codes this protein. We have shown that AMVCP with high affinity is bound to plus-chain of RNA4 in vivo. The mutational analysis has shown, that the N-terminal part of AMVCP (aa 1 to 85) contains RNA-binding domain. C-terminal part of this protein (aa 86 to 221) does not participate in direct interaction with RNA4. However activity of the reporter-gene LacZ, which codes beta-galactosidase, in case of interaction only N-terminal part of AMVCP is five times lower, in comparison with full-length hybrid protein, that confirms that the tertiary structure of full-length AMVCP is more favourable for interaction with RNA4.  相似文献   

18.
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.  相似文献   

19.
An mRNA-dependent reticulocyte lysate has been used to translate foot-and-mouth disease virus RNA in vitro. Polypeptides P16, P20a, and P88, which have been shown to be derived from the 5' end of the RNA by pactamycin mapping experiments with infected cells, were preferentially synthesized in vitro. Removal of VPg, the small protein covalently linked to the 5' end of the genome RNA, had no effect on the translation of the RNA. The two RNA fragments (L and S) produced by specific digestion of the polycytidylic acid [poly(C)] tract with RNase H were also translated in vitro. The L fragment, consisting of RNA to the 3' side of the poly(C) tract and including the polyadenylic acid [poly(A)] tract, directed the synthesis of the same products as those made by full-length RNA. However, no small defined products were produced when the S fragment, which contains the 5' end of the RNA, was translated. These results show that the major initiation site for protein synthesis on foot-and-mouth disease virus RNA is to the 3' side of the poly(C) tract. Furthermore, the use of N-formyl [35S]methionine tRNAfMet as a label for the initiation peptides showed that the major polypeptide labeled in lysates primed with both full-length RNA and the L fragment was P16, i.e., the protein nearest the initiation site for translation as deduced from pactamycin mapping experiments. Fragments of RNA were also translated in vitro. Those containing the poly(C) tract gave products similar to those produced when full-length RNA was translated. The polypeptides synthesized when fragments containing the poly(A) tract were used, however, did not resemble those made from full-length RNA.  相似文献   

20.
The NS5B encoded by the hepatitis C virus genome is a RNA-dependent RNA polymerase essential to viral replication. The entire NS5B protein contains a catalytic domain followed by a regulatory motif and a membrane-anchor domain at its C-terminus. Reported here is the molecular cloning and expression of the full-length NS5B polymerase (NS5B-FL) in bacterial cells as a non-fusion protein. The non-tagged NS5B-FL was purified to homogeneity using sequential chromatographic columns and its identity was confirmed using anti-NS5B peptide antibodies and amino acid sequencing. Purified NS5B-FL demonstrated RNA-dependent RNA polymerase activity and was able to replicate a HCV RNA genome fragment through both copy-back and de novo mechanisms. Its biochemical properties were further characterized in comparison with a truncated form of NS5B polymerase with a deletion of 51 residues from its C-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号