首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the rate of creatine phosphate synthesis in the mitochondrial creatine phosphokinase reaction upon the rate of oxidative phosphorylation and ATP translocation from the matrix to outside of the mitochondria has been studied. It has been experimentally shown that mitochondrial creatine phosphokinase reacts slowly with ATP in the medium but is very active in utilization of ATP synthesized by the oxidative phosphorylation process. From these data, it is postulated, therefore, that the ATP-ADP translocase transports ATP molecules directly to the active site of creatine phosphokinase localized on the outer site of the inner membrane. This results in an increase in the effective concentration of ATP in the vinicity of the active sites of creatine kinase and in acceleration of the forward reaction (creatine phosphate synthesis). The kinetic theory based on this assumption allows a quantitative explanation of the observed dependences. These data indicate the tight functional coupling between ATP-ADP translocase and creatine phosphokinase in heart mitochondria. It is concluded that in heart cells energy can be transported by creatine phosphate molecules only.  相似文献   

2.
Mitochondrial creatine kinase in brain mitochondria appears to be located at two different intramitochondrial sites. By using immunogold-labeling techniques, a peripheral immunoreactivity was localized between the two boundary membranes, while an additional, central immunoreactivity was found at the crista surface. The peripheral enzyme was accessible to the antibodies after treatment of the brain mitochondria with 100-300 μg digitonin/mg mitochondrial protein, which left 75% of the activity bound to the membranes. Electron microscopic analyses revealed that 43% of the labeled, peripheral creatine kinase was bound at those places where outer membrane vesicles remained attached to the inner envelope membrane, suggesting that the enzyme is in involved in contact formation between outer and inner mitochondrial membranes. Postembedding staining of mitochondria on thin sections of brain tissue or in the isolated state led to the observation of a second location of creatine kinase inside the mitochondria, along the cristae, which was not accessible to the antibodies in isolated, digitonin-treated mitochondria.  相似文献   

3.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

4.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

5.
1. The localization of monoamine oxidase in the mitochondrial outer membrane was studied in preparations of human liver mitochondrial and brain-cortex non-synaptosomal and synaptosomal mitochondria. 2. Immunochemical accessibility in iso-osmotic and hypo-osmotic mitochondrial preparations was used to localize the enzyme. 3. It was shown that the immunochemically accessible tyramine-oxidizing activity was distributed approximately equally on both surfaces of the membrane in human liver and brain-cortex non-synaptosomal mitochondria. However, the immunochemically accessible beta-phenethylamine-oxidizing activity was situated predominantly on the outer surface, and the immunochemically accessible 5-hydroxytryptamine-oxidizing activity was situated predominantly on the inner surface of the mitochondrial outer membrane in liver and brain-cortex non-synaptosomal mitochondrial preparations. 4. Considerable variation in the distribution of the enzyme in preparations of synaptosomal mitochondria was seen. 5. The simplest model consistent with our observations is that, in liver and brain-cortex non-synaptosomal mitochondria, the tyramine-oxidizing activity is distributed on both sides of the mitochondrial outer membrane, the beta-phenethylamine-oxidizing activity is located on the outer surface of the outer membrane and the 5-hydroxytryptamine-oxidizing activity is located on the inner surface of the mitochondria outer membrane.  相似文献   

6.
Dystrophic chicken breast muscle mitochondria contain significantly less mitochondrial creatine kinase than normal breast muscle mitochondria. Breast muscle mitochondria from normal 16- to 40-day-old chickens contain approximately 80 units of mitochondrial creatine kinase per unit of succinate:INT (p-iodonitrotetrazolium violet) reductase, a mitochondrial marker, while dystrophic chicken breast muscle mitochondria contain 36-44 units. Normal chicken heart muscle mitochondria contain about 10% of the mitochondrial creatine kinase per unit of succinate:INT reductase as normal breast muscle mitochondria. The levels in heart muscle mitochondria from dystrophic chickens are not affected significantly. Evidence is presented which shows that the reduced level of mitochondrial creatine kinase in dystrophic breast muscle mitochondria is responsible for an altered creatine linked respiration. First, both normal and dystrophic breast muscle mitochondria respire with the same state 3 and state 4 respiration. Second, the post-ADP state 4 rate of respiration of normal breast muscle mitochondria in the presence of 20 mM creatine continues at the state 3 rate. However, the state 4 rate of dystrophic breast muscle mitochondria and mitochondria from other muscle types with a low level of mitochondrial creatine kinase, such as heart muscle and 5-day-old chicken breast muscle, is slower than the state 3 rate. Third, dystrophic breast mitochondria synthesize ATP at the same rate as normal breast muscle mitochondria but rates of creatine phosphate synthesis in 20-50 mM Pi are reduced significantly. Finally, increasing concentrations of Pi displace mitochondrial creatine kinase from mitoplasts of normal and dystrophic breast muscle mitochondria with the same apparent KD, indicating that the outer surface of the inner mitochondrial membrane and the mitochondrial creatine kinase from dystrophic muscle are not altered.  相似文献   

7.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

8.
A membrane fraction of intermediate density between inner and outer membrane was isolated by density gradient centrifugation from osmotically disrupted mitochondria of rat liver, brain, and kidney. The fraction was hexokinase rich and could therefore be further purified using specific antibodies against hexokinase and immunogold labelling techniques. In agreement with recent findings the gradient fraction which cosedimented with hexokinase contained the boundary membrane contact sites because it was composed of outer and inner membrane components and beside hexokinase, was enriched also by activity of creatine kinase and nucleoside diphosphate kinase. In contrast the activity of adenylate kinase appeared to be concentrated beyond the contact sites in the outer membrane fraction. By employing surface proteolysis analysis and specific blockers of the outer membrane pore we observed that the location of the kinases relative to the membrane components in the contact fraction resembled that of intact mitochondria. This specific organization of some peripheral kinases in the contact sites suggested an important role of the voltage dependence of the outer membrane pore, in that the pore may become limiting in anion exchange because of influence of the inner membrane potential on the closely attached outer membrane. Such control of anion exchange would lead to a dynamic compartmentation at the mitochondrial surface by the formation of contact sites, which may explain the preferential utilization of cytosolic creatine by the mitochondrial creatine kinase, as postulated in the phosphocreatine shuttle.  相似文献   

9.
Immunoblotting of isolated mitochondria from rat heart, liver, kidney, and brain with antibodies made against N- and C-terminal peptide sequences of the creatine transporter, together with in situ immunofluorescence staining and immunogold electron microscopy of adult rat myocardium, revealed two highly related polypeptides with molecular masses of approximately 70 and approximately 55 kDa in mitochondria. These polypeptides were localized by immunoblotting of inner and outer mitochondrial membrane fractions, as well as by immunogold labeling in the mitochondrial inner membrane. In addition, a novel creatine uptake via a mitochondrial creatine transport activity was demonstrated by [(14)C]creatine uptake studies with isolated mitochondria from rat liver, heart, and kidney showing a saturable low affinity creatine transporter, which was largely inhibited in a concentration-dependent manner by the sulfhydryl-modifying reagent NEM, as well as by the addition of the above anti-creatine transporter antibodies to partially permeabilized mitochondria. Mitochondrial creatine transport was to a significant part dependent on the energetic state of mitochondria and was inhibited by arginine, and to some extent also by lysine, but not by other creatine analogues and related compounds. The existence of an active creatine uptake mechanism in mitochondria indicates that not only creatine kinase isoenzymes, but also creatine transporters and thus a certain proportion of the creatine kinase substrates, might be subcellularly compartmentalized. Our data suggest that mitochondria, shown here to possess creatine transport activity, may harbor such a creatine/phosphocreatine pool.  相似文献   

10.
Porin, an intrinsic protein of outer mitochondrial membranes of rat liver, was synthesized in vitro in a cell-free in a cell-free translation system with rat liver RNA. The apparent molecular mass of porin synthesized in vitro was the same as that of its mature form (34 kDa). This porin was post-translationally integrated into the outer membrane of rat liver mitochondria when the cell-free translation products were incubated with mitochondria at 30 degrees C even in the presence of a protonophore (carbonyl cyanide m-chlorophenylhydrazone). Therefore, the integration of porin seemed to proceed energy-independently as reported by Freitag et al. [(1982) Eur. J. Biochem. 126, 197-202]. Its integration seemed, however, to require the participation of the inner membrane, since porin was not integrated when isolated outer mitochondrial membranes alone were incubated with the translation products. Porin in the cell-free translation products bound to the outside of the outer mitochondrial membrane when incubated with intact mitochondria at 0 degrees C for 5 min. When the incubation period at 0 degrees C was prolonged to 60 min, this porin was found in the inner membrane fraction, which contained monoamine oxidase, suggesting that porin might bind to a specific site on the outer membrane in contact or fused with the inner membrane (a so-called OM-IM site). This porin bound to the OM-IM site was integrated into the outer membrane when the membrane fraction was incubated at 30 degrees C for 60 min. These observations suggest that porin bound to the outside of the outer mitochondrial membrane is integrated into the outer membrane at the OM-IM site by some temperature-dependent process(es).  相似文献   

11.
Non-immune activation of the first component of complement (C1) by the heart mitochondrial inner membrane has been investigated. Cardiolipin, the only strong activator of C1 among phospholipids, is present in large amounts in the heart mitochondrial inner membrane. We therefore studied its contribution to C1 activation by mitochondria. The proteins of the mitochondrial inner membrane were found to activate C1 only weakly, in contrast with the phospholipid fraction which induces strong C1 activation. Furthermore, the digestion of mitochondrial inner membranes with proteolytic enzymes did not affect C1 activation. Additional support in favour of cardiolipin being the responsible activator came from competition experiments with mitochondrial creatine kinase (mt-CPK) and adriamycin, known to bind to cardiolipin. Both mt-CPK and adriamycin displaced C1q from the mitochondrial inner membrane. In addition, C1q displaced mt-CPK bound to mitoplasts.  相似文献   

12.
Controlled osmotic lysis (water-washing) of rat liver mitochondria results in a mixed population of small vesicles derived mainly from the outer mitochondrial membrane and of larger bodies containing a few cristae derived from the inner membrane. These elements have been separated on Ficoll and sucrose gradients. The small vesicles were rich in monoamine oxidase, and the large bodies were rich in cytochrome oxidase. Separation of the inner and outer membranes has also been accomplished by treating mitochondria with digitonin in an isotonic medium and fractionating the treated mitochondria by differential centrifugation. Treatment with low digitonin concentrations released monoamine oxidase activity from low speed mitochondrial pellets, and this release of enzymatic activity was correlated with the loss of the outer membrane as seen in the electron microscope. The low speed mitochondrial pellet contained most of the cytochrome oxidase and malate dehydrogenase activities of the intact mitochondria, while the monoamine oxidase activity could be recovered in the form of small vesicles by high speed centrifugation of the low speed supernatant. The results indicate that monoamine oxidase is found only in the outer mitochondrial membrane and that cytochrome oxidase is found only in the inner membrane. Digitonin treatment released more monoamine oxidase than cytochrome oxidase from sonic particles, thus indicating that digitonin preferentially degrades the outer mitochondrial membrane.  相似文献   

13.
The state of mitochondrial creatine kinase (CKmi-mi) in intact dog heart mitochondria and mitoplasts and the mechanism of its functional coupling with the oxidative phosphorylation system have been reinvestigated under different osmotic conditions and ionic compositions of the medium. It has been established that in a medium which mimics the cardiac cell cytoplasma, dissociation of CKmi-mi from the membrane of mitoplasts increases when the mitoplasts are swollen due to hypoosmotic treatment. It was shown by EPR that hypoosmotic treatment results in the enhancement of the mobility of phospholipids in the membrane bilayer. It has been also shown that when CKmi-mi is detached from the inner membrane in intact mitochondria in isotonic KCl solution, the effects of the coupling between CKmi-mi and oxidative phosphorylation via ATP/ADP translocase disappear in spite of the presence of CKmi-mi in the intermembrane space and intactness of the outer mitochondrial membrane. Therefore, this coupling cannot be explained by the "compartmented coupling" mechanism or "dynamic adenine nucleotide compartmentation" in the intermembrane space due to diffusion limitation for adenine nucleotides through the outer mitochondrial membrane, as has been supposed by several authors (F.N. Gellerich et al. (1987) Biochim. Biophys. Acta 890, 117-126; S.P.J. Brooks and C.H. Suelter (1987) Arch. Biochem. Biophys. 253, 122-132). The data obtained show that the displacement of the enzyme from the membrane results in significantly increased sensitivity of the coupled processes of aerobic phosphocreatine synthesis to inhibition by the product, phosphocreatine. Thus, all results show that under physiological osmotic and ionic conditions CKmi-mi remains firmly attached to the inner mitochondrial membrane and effectively coupled with ATP/ADP translocase due to intimate dynamic interaction between those proteins.  相似文献   

14.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

15.
Configurational changes of glutaraldehyde fixed heavy beef heart mitochondria are confirmed using the freeze fracture technique. Large amplitude swelling occurred after unfixed mitochondria were suspended in 30% glycerol. Fine structure of the outer and inner mitochondrial membranes is described using unfixed heavy beef heart mitochondria by the freeze fracture technique. The matrix side of the inner membrane appears to be covered with 90 Å particles while the opposite side (cytochromec side) is also particulate covered by a high density of lower profile particles with a smooth underlying mosaic layer beneath. The outer surface of the outer membrane is smooth with particles embedded within the membrane. Possible structure of the membrane is discussed.  相似文献   

16.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

17.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

18.
The following stereological parameters of mitochondria were calculated in rat germ cells during the spermatogenesis: volume density of matrix, outer compartment, outer membrane and inner membrane, surface density of outer membrane and inner membrane. They were the basis to calculate the partition coefficient of matrix and partition coefficient of outer compartment. The matrix volume demonstrated a decreasing in mitochondria of germ cells during spermatogenesis. The relative volume of outer compartment was calculated with the intracristal spaces and revealed increasing from spermatogonia to spermatids. The partition coefficient for the matrix significantly decreased. Our observations suggest that transformation of mitochondrial configuration during spermatogenesis and spermiogenesis is the expression of intensive metabolic processes and activity of membrane transport in germ cells.  相似文献   

19.
The kinetic properties of MM-isozyme of creatine phosphokinase (CPK) bound to heart myofibrils have been determined experimentally. It has been shown that CPK isozymes bound to the heart myofibrils and mitochondria are electrophoretically different, but have very similar kinetic properties. For both isozymes the ATP formation reaction is preferable. However, in heart mitochondria the kinetic properties of CPK are compensated for by a tight functional coupling with ATP-ADP translocase. Due to this coupling the ATP formed in the course of oxidative phosphorylation can be used completely for creatine phosphate production in mitochondria. On the other hand, the kinetic properties of myofibrillar CPK isozyme are such that they provide for the effective utilization of creatine phosphate produced in mitochondria for rephosphorylation of AKP formed in the myofibrils during contraction. It is concluded that in the heart cells energy can be transferred from the mitochondria to the myofibrils by creatine phosphate molecules.  相似文献   

20.
Translocation of phosphatidylinositol, which is synthesized on the outer aspect of the outer membrane of isolated yeast mitochondria, to the inner membrane is linked to phosphatidylinositol synthesis and is therefore a vectorial process. Phosphatidylinositol once integrated into the inner mitochondrial membrane is not transferred back to the mitochondrial surface. Phosphatidylserine is also translocated from the outer to the inner mitochondrial membrane, where it is decarboxylated to phosphatidylethanolamine. We made use of this metabolic modification to characterize the intramitochondrial transfer of phosphatidylserine and phosphatidylethanolamine. Intramitochondrial phosphatidylserine transfer is insensitive to the uncoupler carbonyl cyanide m-chlorophenylhydrazone and to valinomycin and is thus independent of an electrochemical gradient across the inner membrane. Transfer of phosphatidylserine from the outer to the inner mitochondrial membrane occurs not only in intact mitochondria but also in mitoplasts which are devoid of intermembrane space proteins but have the outer membrane still adherent to the inner membrane. This result suggests that specific contact sites are involved in the intramitochondrial translocation of phospholipids. 3H-Labeled phosphatidylethanolamine synthesized from [3H]serine in isolated mitochondria is readily exported from the inner to the outer mitochondrial membrane without prior mixing with the pool of phosphatidylethanolamine of the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号