首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Toro  E Stefani  R Latorre 《Neuron》1992,9(2):237-245
Shaker B inactivating peptide ("ball peptide", BP) interacts with Ca(2+)-activated K+ (KCa) channels from the cytoplasmic side only, producing inhibition of channel activity. This effect was reversible and dose and voltage dependent (stronger at depolarized potentials). The inhibition of KCa channels by BP cannot be mimicked by an inactive point mutation of the BP, L7E. BP binds to KCa channels in a bimolecular reaction (dissociation constant of 95 microM at +40 mV). The binding site is probably located in the internal "mouth" or conduction pathway, since both external K+ and internal tetraethylammonium relieve BP-induced inhibition. These results suggest that KCa channels possess a binding site for the BP with some properties similar to the ball receptor found in Shaker B K+ channels.  相似文献   

2.
High-conductance Ca(2+)-activated K+ channels from rat skeletal muscle were incorporated into planar lipid bilayers, and the channel kinetics were studied with a high internal Ca2+ concentration (Cai). Raising the Cai is known to increase the channel open probability. This effect is due to an increases in openings frequency and duration, and saturates at a Cai around 100 microM. Raising the Cai also increases the occurrence of less frequent but very long (> 5 s) shut events. The mechanism underlying this slow kinetic process was studied. Raising Cai above 100 microM does not further increase the frequency of the long shut events. This was not consistent with the hypothesis that the long closures result from a classical channel-block mechanism induced by internal Ca2+. The transmembrane voltage and the presence of K+ ions in the external compartment both affect the slow kinetic process. A comparison of these effects with the properties of the channel block induced by Ba2+ ions added to the internal compartment strongly suggested that the long shut events are due to a contamination of the internal solutions by Ba2+. This was confirmed by showing that a crown-ether compound that strongly chelates Ba2+ completely suppresses the long shut events when added to the inner compartment.  相似文献   

3.
The Ca(2+)-dependent K+ channel of human red cells was inhibited with high affinity by several imidazole antimycotics which are potent inhibitors of cytochrome P-450. IC50 values were (in microM): clotrimazole, 0.05; tioconazole, 0.3; miconazole, 1.5; econazole, 1.8. Inhibition of the channel was also found with other drugs with known cytochrome P-450 inhibitory effect. However, no inhibition was obtained with carbon monoxide (CO). This suggests that, given the high selectivity of the above inhibitors for the heme moiety, a different but closely related to cytochrome P-450 kind of hemoprotein may be involved in the regulation of the red cell Ca(2+)-dependent K+ channel. Clotrimazole also inhibited two other charybdotoxin-sensitive Ca(2+)-dependent K+ channels, those of rat thymocytes (IC50 = 0.1-0.2 microM) and of Ehrlich ascites tumor cells (IC50 = 0.5 microM). Imidazole antimycotics inhibit also receptor-operated Ca2+ channels (Montero, M., Alvarez, J. and García-Sancho, J. (1991) Biochem. J. 277, 73-79). This suggests that both Ca2+ and Ca(2+)-dependent K+ channels might have a similar regulatory mechanism involving a cytochrome.  相似文献   

4.
5.
Shaker K+ channels were expressed in outside-out macropatches excised from Xenopus oocytes, and the effects on gating of removal of extracellular Ca2+ were examined in the complete absence of intracellular divalent cations. Removal of extracellular Ca2+ by perfusion with EDTA-containing solution caused a small negative shift in the channel's voltage-activation curve and led to an increased nonselective leak, but did not otherwise alter or disrupt the channels. The results contradict the proposal that Ca2+ is an essential component required for maintenance of ion selectivity and proper gating of Kv-type K+ channels. The large nonselective leak in Ca2+-free conditions was found to be a patch-seal phenomenon related to F- ion in the recording pipette.  相似文献   

6.
We show that noxiustoxin (NTX), like charybdotoxin (CTX) described by others, affects Ca2+-activated K+ channels of skeletal muscle (K+(Ca2+) channels). Chemical characterization of CTX shows that it is similar to NTX. Although the amino-terminal amino acid of CTX is not readily available, the molecule was partially sequenced after CNBr cleavage. A decapeptide corresponding to the C-terminal region of NTX shows 60% homology to that of CTX, maintaining the cysteine residues at the same positions. While CTX blocks the K+ (Ca2+) channels with a Kd of 1-3 nM, for NTX it is approx. 450 nM. Both peptides can interact simultaneously with the same channel. NTX and CTX promise to be good tools for channel isolation.  相似文献   

7.
We have studied potassium currents through a cloned Ca(2+)-dependent K+ channel (hslo) from human myometrium. Currents were recorded in inside- out macropatches from membranes of Xenopus laevis oocytes. In particular, the inactivation-like process that these channels show at high positive potentials was assessed in order to explore its molecular nature. This current inhibition conferred a bell shape to the current- voltage curves. The kinetic and voltage dependence of this process suggested the possibility of a Ba2+ block. There were the following similarities between the inactivation process observed at zero-added Ba2+ and the internal Ba2+ block of hslo channels: (a) in the steady state, the voltage dependence of the current inhibition observed at zero-added Ba2+ was the same as the voltage dependence of the Ba2+ block; (b) the time constant for recovery from current decay at zero- added Ba2+ was the same as the time constant for current recovery from Ba2+ blockade; and (c) current decay was largely suppressed in both cases by adding a Ba2+ chelator [(+)-18-crown-6-tetracarboxylic acid] to the internal solution. In our experimental conditions, we determined that the Kd for the complex chelator-Ba2+ is 1.6 x 10(-10) M. We conclude that the current decay observed at zero-added Ba2+ to the internal solution is due to contaminant Ba2+ present in our solutions (approximately 70 nM) and not to an intrinsic gating process. The Ba2+ blocking reaction in hslo channels is bimolecular. Ba2+ binds to a site (Kd = 0.36 +/- 0.05 mM at zero applied voltage) that senses 92 +/- 25% of the potential drop from the internal membrane surface.  相似文献   

8.
9.
10.
A large number of related genes (the Sh gene family) encode potassium channel subunits which form voltage-dependent K+ channels by aggregating into homomulitimers. One of these genes, the Shaker gene in Drosophila, generates several products by alternative splicing. These products encode proteins with a constant central region flanked by variable amino and carboxyl domains. Coinjection of two Shaker RNAs with different amino or different carboxyl ends into Xenopus oocytes produces K+ currents that display functional properties distinct from those observed when each RNA is injected separately, indicating the formation of heteromultimeric channels. The analysis of Shaker heteromultimers suggests certain rules regarding the roles of variable amino and carboxyl domains in determining kinetic properties of heteromultimeric channels. Heteromultimers with different amino ends produce currents in which the amino end that produces more inactivation dominates the kinetics. In contrast, heteromultimers with different carboxyl ends recover from inactivation at a rate closer to that observed in homomultimers of the subunit which results in faster recovery. While this and other recent reports demonstrate that closely related Sh family proteins form functional heteromultimers, we show here that two less closely related Sh proteins do not seem to form functional heteromultimeric channels. The data suggest that sites for subunit recognition may be found in sequences within a core region, starting about 130 residues before the first membrane spanning domain of Shaker and ending after the last membrane spanning domain, which are not conserved between Sh Class I and Class III genes.  相似文献   

11.
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels.  相似文献   

12.
The solution structure of contryphan-Vn, a cyclic peptide with a double cysteine S-S bridge and containing a D-tryptophan extracted from the venom of the cone snail Conus ventricosus, has been determined by NMR spectroscopy using a variety of homonuclear and heteronuclear NMR methods and restrained molecular dynamics simulations. The main conformational features of backbone contryphan-Vn are a type IV beta-turn from Gly 1 to Lys 6 and a type I beta-turn from Lys 6 to Cys 9. As already found in other contryphans, one of the two prolines--the Pro4--is mainly in the cis conformation while Pro7 is trans. A small hydrophobic region probably partly shielded from solvent constituted from the close proximity of side chains of Pro7 and Trp8 was observed together with a persistent salt bridge between Asp2 and Lys6, which has been revealed by the diagnostic observation of specific nuclear Overhauser effects. The salt bridge was used as a restraint in the molecular dynamics in vacuum but without inserting explicit electrostatic contribution in the calculations. The backbone of the unique conformational family found of contryphan-Vn superimposes well with those of contryphan-Sm and contryphan-R. This result indicates that the contryphan structural motif represents a robust and conserved molecular scaffold whose main structural determinants are the size of the intercysteine loop and the presence and location in the sequence of the D-Trp and the two Pro residues.  相似文献   

13.
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+).  相似文献   

14.
The properties of large conductance Ca(2+)-dependent K+ channels in smooth muscle cells (SMC) isolated from normal and atherosclerotic human aorta were studied using the patch-clamp technique. It was shown that SMC from normal human aorta possess a homogeneous population of normal Ca(2+)-dependent K+ channels. In atherosclerotic aorta two kinetically different types of these channels could be distinguished: along with normal 'long' (L)-type channels there appeared channels of 'short' (s)-type. Under similar conditions s-type channels had about a four times shorter mean open time. About five times higher [Ca2+]in was necessary for s-type channels to reach the probability of the channels being open equal to L-type channels. No differences in conductance and voltage dependency were found between the two channel types. Channels of the s-type resembled those previously described in SMC isolated from foetal human aorta. Thus, it can be suggested that during the development of atherosclerosis a population of SMC with s-type Ca(2+)-dependent K+ channels appears in human aorta.  相似文献   

15.
TheCl secretory response ofcolonic cells to Ca2+-mediatedagonists is transient despite a sustained elevation of intracellular Ca2+. We evaluated the effects ofsecond messengers proposed to limit Ca2+-mediatedCl secretion on thebasolateral membrane,Ca2+-dependentK+ channel(KCa) in colonic secretorycells, T84. Neither protein kinase C (PKC) nor inositoltetrakisphosphate (1,3,4,5 or 3,4,5,6 form) affectedKCa in excised inside-out patches.In contrast, arachidonic acid (AA; 3 µM) potently inhibitedKCa, reducingNPo, the productof number of channels and channel open probability, by 95%. Theapparent inhibition constant for this AA effect was 425 nM. AAinhibited KCa in the presence ofboth indomethacin and nordihydroguaiaretic acid, blockers of thecyclooxygenase and lipoxygenase pathways. In the presence of albumin,the effect of AA on KCa wasreversed. A similar effect of AA was observed onKCa during outside-out recording.We determined also the effect of thecis-unsaturated fatty acid linoleate,the trans-unsaturated fatty acidelaidate, and the saturated fatty acid myristate. At 3 µM, all ofthese fatty acids inhibited KCa,reducing NPo by 72-86%. Finally, the effect of the cytosolic phospholipaseA2 inhibitorarachidonyltrifluoromethyl ketone(AACOCF3) on thecarbachol-induced short-circuit current(Isc) responsewas determined. In the presence ofAACOCF3, the peakcarbachol-inducedIsc response wasincreased ~2.5-fold. Our results suggest that AA generation inducedby Ca2+-mediated agonists maycontribute to the dissociation observed between the rise inintracellular Ca2+ evoked by theseagonists and the associatedCl secretory response.

  相似文献   

16.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

17.
18.
19.
Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels   总被引:3,自引:0,他引:3  
To quantify the modulation of KCNQ2/3 current by [Ca2+]i and to test if calmodulin (CaM) mediates this action, simultaneous whole-cell recording and Ca2+ imaging was performed on CHO cells expressing KCNQ2/3 channels, either alone, or together with wild-type (wt) CaM, or dominant-negative (DN) CaM. We varied [Ca2+]i from <10 to >400 nM with ionomycin (5 microM) added to either a 2 mM Ca2+, or EGTA-buffered Ca2+-free, solution. Coexpression of wt CaM made KCNQ2/3 currents highly sensitive to [Ca2+]i (IC50 70 +/- 20 nM, max inhibition 73%, n = 10). However, coexpression of DN CaM rendered KCNQ2/3 currents largely [Ca2+]i insensitive (max inhibition 8 +/- 3%, n = 10). In cells without cotransfected CaM, the Ca2+ sensitivity was variable but generally weak. [Ca2+]i modulation of M current in superior cervical ganglion (SCG) neurons followed the same pattern as in CHO cells expressed with KCNQ2/3 and wt CaM, suggesting that endogenous M current is also highly sensitive to [Ca2+]i. Coimmunoprecipitations showed binding of CaM to KCNQ2-5 that was similar in the presence of 5 mM Ca2+ or 5 mM EGTA. Gel-shift analyses suggested Ca2+-dependent CaM binding to an "IQ-like" motif present in the carboxy terminus of KCNQ2-5. We tested whether bradykinin modulation of M current in SCG neurons uses CaM. Wt or DN CaM was exogenously expressed in SCG cells using pseudovirions or the biolistic "gene gun." Using both methods, expression of both wt CaM and DN CaM strongly reduced bradykinin inhibition of M current, but for all groups muscarinic inhibition was unaffected. Cells expressed with wt CaM had strongly reduced tonic current amplitudes as well. We observed similar [Ca2+]i rises by bradykinin in all the groups of cells, indicating that CaM did not affect Ca2+ release from stores. We conclude that M-type currents are highly sensitive to [Ca2+]i and that calmodulin acts as their Ca2+ sensor.  相似文献   

20.
Contryphan-Vn is a D-tryptophan-containing disulfide-constrained nonapeptide isolated from the venom of Conus ventricosus, the single Mediterranean cone snail species. The structure of the synthetic Contryphan-Vn has been determined by NMR spectroscopy. Unique among Contryphans, Contryphan-Vn displays the peculiar presence of a Lys-Trp dyad, reminiscent of that observed in several voltage-gated K(+) channel blockers. Electrophysiological experiments carried out on dorsal unpaired median neurons isolated from the cockroach (Periplaneta americana) nerve cord on rat fetal chromaffin cells indicate that Contryphan-Vn affects both voltage-gated and Ca(2+)-dependent K(+) channel activities, with composite and diversified effects in invertebrate and vertebrate systems. Voltage-gated and Ca(2+)-dependent K(+) channels represent the first functional target identified for a conopeptide of the Contryphan family. Furthermore, Contryphan-Vn is the first conopeptide known to modulate the activity of Ca(2+)-dependent K(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号