首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.  相似文献   

3.
4.
Expression of a Streptomyces plasmid promoter in Escherichia coli   总被引:6,自引:0,他引:6  
Z Deng  T Kieser  D A Hopwood 《Gene》1986,43(3):295-300
A 166-bp DNA fragment from the Streptomyces multicopy plasmid pIJ101 with in vivo promoter activity both in Streptomyces lividans and in Escherichia coli was isolated. The start point of the RNA transcribed from this fragment, determined by high resolution S1 nuclease mapping, was the same in S. lividans and in E. coli. This suggests that the E. coli RNA polymerase recognizes the same sequence determinants and chooses the point of initiation of RNA synthesis in the same way as the corresponding S. lividans enzyme. The putative promoter sequence shows good homology to the E. coli promoter consensus sequence in the '-35' region but poor homology in the '-10' region.  相似文献   

5.
6.
The choice of a host for the production of a biological molecule will have a significant effect on isolation and purification procedures employed. This paper makes a comparison between the production of a single enzyme, a recombinant alpha-amylase, in Escherichia coli and Streptomyces lividans, on a small scale. It defines the differences in the cultivation and in the isolation stages and also describes the impact of the expression system on later downstream processing steps. At the cultivation stage, the specific productivity of the E. coli in units per gram per hour is four times that of the S. lividans while the total biomass yields are of the same order. The initial volume for downstream processing of S. lividans is six-fold larger and the total protein released into the extracellular medium is three times greater than E. coli, however, the recoverable yield from the E. coli is a fifth of that obtained from the S. lividans and requires three additional stages prior to chromatography. Even with these stages the final specific activity is 64% of the S. lividans. The results indicate the need to consider the whole process when making such comparisons.  相似文献   

7.
The gene encoding a proteinous alpha-amylase inhibitor (HaimII) of Streptomyces griseosporeus YM-25 has been cloned in Escherichia coli K12 using a deoxyinosine-containing synthetic oligonucleotide as the probe. A 1.6 kilobases BamHI fragment was confirmed to hybridize with the probe and subcloned in an E. coli-S. lividans shuttle vector. The plasmid clone was transferred into S. lividans by transformation. An appreciable amount of alpha-amylase inhibitor activity was found in the culture medium of S. lividans harboring the plasmid. As the specificity was indistinguishable from that of HaimII produced by the original S. griseosporeus strain, we concluded that the HaimII protein was synthesized in S. lividans and excreted into the medium.  相似文献   

8.
The argC gene of Streptomyces clavuligerus encoding N-acetylglutamyl-phosphate reductase (AGPR) has been cloned by complementation of argC mutants Streptomyces lividans 1674 and Escherichia coli XC33. The gene is contained in an open reading frame of 1,023 nucleotides which encodes a protein of 340 amino acids with a deduced molecular mass of 35,224 Da. The argC gene is linked to argE, as shown by complementation of argE mutants of E. coli. Expression of argC from cloned DNA fragments carrying the gene leads to high levels of AGPR in wild-type S. lividans and in the argC mutant S. lividans 1674. Formation of AGPR is repressed by addition of arginine to the culture medium. The protein encoded by the argC gene is very similar to the AGPRs of Streptomyces coelicolor, Bacillus subtilis, and E. coli and, to a lesser degree, to the homologous enzymes of Saccharomyces cerevisiae and Anabaena spp. A conserved PGCYPT domain present in all the AGPR sequences suggests that this may be the active center of the protein. Transformation of S. clavuligerus 328, an argC auxotroph deficient in clavulanic acid biosynthesis, with plasmid pULML30, carrying the cloned argC gene, restored both prototrophy and antibiotic production.  相似文献   

9.
10.
Factor C is an unusual extracellular protein capable of inducing cytodifferentiation in certain Streptomyces strains. The protein is produced by Streptomyces griseus 45H at such a low amount that the study of its mode of action was hindered by the shortage of purified protein. We report here the expression of C-terminally hexa-His-tagged factor C in Streptomyces lividans and Escherichia coli. Expression in S. lividans is low while in E. coli it is relatively high, yielding about 5--10 mg of biologically fully active protein per liter culture.  相似文献   

11.
N-substituted formamide deformylase (NfdA) from Arthrobacter pascens F164 is a novel deformylase involved in the metabolism of isonitriles. The enzyme catalyzes the deformylation of an N-substituted formamide, which is produced from the corresponding isonitrile, to yield the corresponding amine and formate. The nfdA gene from A. pascens F164 was cloned into different types of expression vectors for Escherichia coli and Streptomyces strains. Expression in E. coli resulted in the accumulation of an insoluble protein. However, Streptomyces strains transformed with a P(nitA)-NitR system, which we very recently developed as a regulatory gene expression system for streptomycetes, allowed the heterologous overproduction of NfdA in an active form. When Streptomyces lividans TK24 transformed with pSH19-nfdA was cultured under the optimum conditions, the NfdA activity of the cell-free extract amounted to 8.5 U/mg, which was 29-fold higher than that of A. pascens F164. The enzyme also comprised approximately 20% of the total extractable cellular protein. The recombinant enzyme was purified to homogeneity and characterized. The expression system established here will allow structural analysis and mutagenesis studies of NfdA.  相似文献   

12.
Abstract An internal fragment of the recA gene of Streptomyces cattleya was amplified by the polymerase chain reaction (PCR) employing degenerate oligonucleotide primers. Using this fragment as a hybridization probe, a recA homologous gene could be shown in each tested Streptomyces strain. A 4.4 kb Bam HI fragment which carried the complete recA gene was isolated from Streptomyces lividans TK24. Sequence analysis suggested that the coding region of the recA gene consists of 1122 bp. The highest similarity (∼78%) could be detected to the recA genes of Mycobacterium tuberculosis and Mycobacterium leprae . After fusion with an E. coli promoter the S. lividans recA gene could partially complement an Escherichia coli recA mutant.  相似文献   

13.
The Escherichia coli positive selection vector pEcoR251 was ligated with the broad host range, high copy number Streptomyces plasmid pIJ702 to produce pLR591, a Streptomyces-E. coli positive selection shuttle vector. The EcoRI and thiostrepton resistance genes of pLR591 were expressed in E. coli and Streptomyces lividans respectively. The positive selection shuttle vector pLR591 facilitates the construction in E. coli of genomic libraries which can be screened in Streptomyces strains.  相似文献   

14.
Streptomyces lividans DNA contains a modification which makes it susceptible to double-strand cleavage during electrophoresis in buffers contaminated with ferrous iron (which may be present in some batches of EDTA). The cleavage of the DNA is site-specific and the average fragment size resulting from limit digestion of total S. lividans DNA is about 6kb. DNA from Streptomyces coelicolor A3(2) and several other Streptomyces strains, and from E. coli, is not cleaved under the same conditions. A S. lividans mutant has been isolated which lacks the DNA modification. We suspect that many reports of "poor" preparations of S. lividans plasmids may be due to the above effect.  相似文献   

15.
A method to select for transposable elements from Streptomyces spp. by using insertional inactivation of a repressor gene that functions in Escherichia coli was developed. Plasmid pCZA126, which can replicate in Streptomyces spp. or E. coli, contains a gene coding for the lambda cI857 repressor and a gene, under repressor control, coding for apramycin resistance. E. coli cells containing the plasmid are apramycin sensitive but become apramycin resistant if the cI857 repressor gene is disrupted. Plasmids propagated in Streptomyces spp. can be screened for transposable elements that have disrupted the cI857 gene by transforming E. coli cells to apramycin resistance. This method was used to isolate a new 1.6-kilobase insertion sequence, IS493, from Streptomyces lividans CT2. IS493 duplicated host DNA at the target site, had inverted repeats at its ends, and contained two tandem open reading frames on each strand. IS493 was present in three copies in the same genomic locations in several S. lividans strains. Two of the copies appeared to be present in regions of similar DNA context that extended at least 11.5 kilobases. Several other Streptomyces spp. did not appear to contain copies of IS493.  相似文献   

16.
Escherichia coli cells and Streptomyces mycelia are able to form close contacts in the absence of a conjugative system which might facilitate intergeneric plasmid transfer without the genes required for mating pair formation (Tra2) of the RP4 plasmid. The same Tra2 genes found to be essential for RP4 plasmid transfer, RSF1010 mobilization, and donor-specific phage propagation in E. coli were also required for intergeneric transfer between E. coli and Streptomyces lividans.  相似文献   

17.
18.
19.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

20.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号