首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells   总被引:5,自引:0,他引:5  
A panel of murine B lymphoma cell lines, which express different levels of Fas, was extensively studied for sensitivity to Fas-mediated death signals via an anti-Fas mAb and Fas ligand-bearing cell lines. Expression of the Fas receptor on the B lymphoma cell lines did not correlate with their capacity to undergo Fas-mediated apoptosis. Moreover, Fas-associated death domain protein recruitment to the death-inducing signaling complex (DISC) complex occurred in all cell lines expressing Fas, regardless of whether they were sensitive to Fas-mediated death. Interestingly, the protein synthesis inhibitor, cycloheximide, and protein kinase C inhibitors, such as bisindolylmaleimide, rendered one of the resistant cell lines, CH33, sensitive to signals from the Fas receptor, although the levels of Fas were unchanged. This suggests that constitutive PKC activation plays a role in Fas resistance, perhaps by up-regulating NF-kappaB or Bcl-2 family members. Interestingly, CH33 demonstrated caspase 8 activity upon engagement of the Fas receptor in the absence of pharmacological manipulation, suggesting that the block in apoptosis is downstream of the DISC complex. In contrast, the fact that Fas-associated death domain protein was recruited to the DISC complex in other resistant lines, such as WEHI-231, with no caspase 8 activation indicates that these cells may be blocked within the DISC complex. Indeed, Western blot analysis showed that WEHI-231 expressed an isoform of FLICE-like inhibitory protein (cFLIPL), an antiapoptotic protein within the DISC. These studies provide evidence that murine B lymphoma cells utilize different molecular mechanisms along the Fas-signaling cascade to block apoptosis.  相似文献   

2.
T cells in murine lupus: propagation and regulation of disease   总被引:4,自引:0,他引:4  
MRL/Mp-lpr/lpr mice develop a spontaneous lupus syndrome, including hypergammaglobulinemia, autoantibodies, glomerulonephritis, and lymphadenopathy. To investigate the role of lymphocyte subsets in the pathogenesis of disease, lupus-prone MRL mice deficient in T cells, T cells, or both were generated. Mice deficient in T cells developed a partially penetrant lupus syndrome, characterized by lymphadenopathy, elevated levels of class-switched immunoglobulins, an increased incidence of antinuclear antibodies, and immune deposits in kidneys which progressed to renal insufficiency over time. In comparison to wild type animals, T cell-deficient animals developed an accelerated and exacerbated disease phenotype, characterized by accelerated hypergammaglobulinemia and enhanced autoantibody production and mortality. Repertoire analysis of these latter animals identified polyclonal expansion (V) of CD4+B220-cells. Mice lacking both and T cells failed to generate class-switched autoantibodies and immune complex renal disease. First, these findings demonstrate that murine lupus in the setting of Fas-deficiency does not absolutely require the presence of T cells, and they also suggest that a significant basis for MRL/lpr disease, including renal disease, involves T cell-independent, T cell dependent, polyreactive B cell autoimmunity, upon which T cell-dependent mechanisms aggravate specific autoimmune responses. Second, these data indicate that T cells partake in the regulation of systemic autoimmunity, presumably via their effects on CD4+B220-T cells that provide B cell help. Finally, these results demonstrate that MRL/lpr B cells, despite their intrinsic abnormalities, cannot per se cause tissue injury without T cell help.Abbreviations snRNPs small nuclear ribonucleoprotein particles  相似文献   

3.
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of an as yet unidentified mutant gene, Yaa (Y-linked autoimmune acceleration). In view of a possible role of marginal zone (MZ) B cells in murine SLE, we have explored whether the expression of the Yaa mutation affects the differentiation of MZ and follicular B cells, thereby implicating the acceleration of the disease. In this study, we show that both BXSB and C57BL/6 Yaa mice, including two different substrains of BXSB Yaa males that are protected from SLE, displayed an impaired development of MZ B cells early in life. Studies in bone marrow chimeras revealed that the loss of MZ B cells resulted from a defect intrinsic to B cells expressing the Yaa mutation. The lack of selective expansion of MZ B cells in diseased BXSB Yaa males strongly argues against a major role of MZ B cells in the generation of pathogenic autoantibodies in the BXSB model of SLE. Furthermore, a comparative analysis with mice deficient in CD22 or expressing an IgM anti-trinitrophenyl/DNA transgene suggests that the hyperreactive phenotype of Yaa B cells, as judged by a markedly increased spontaneous IgM secretion, is likely to contribute to the enhanced maturation toward follicular B cells and the block in the MZ B cell generation.  相似文献   

4.
As the immediate precursors to mature follicular B cells in splenic development, immature transitional cells are an essential component for understanding late B cell differentiation. It has been shown that T2 cells can give rise to mature B cells; however, whether T3 B cells represent a normal stage of B cell development, which has been widely assumed, has not been fully resolved. In this study, we demonstrate both in vitro and in vivo that T3 B cells do not give rise to mature B cells and are instead selected away from the T1-->T2-->mature B cell developmental pathway and are hyporesponsive to stimulation through the BCR. Significantly reduced numbers of T3 B cells in young lupus-prone mice further suggest that the specificity of this subset holds clues to understanding autoimmunity.  相似文献   

5.
Systemic lupus erythematosus and its preclinical lupus-prone mouse models are autoimmune disorders involving the production of pathogenic autoantibodies. Genetic predisposition to systemic lupus erythematosus results in B cell hyperactivity, survival of self-reactive B cells, and differentiation to autoantibody-secreting plasma cells (PCs). These corrupt B cell responses are, in part, controlled by excess levels of the cytokine BAFF that normally maintains B cell homeostasis and self-tolerance through limited production. B cell maturation Ag (BCMA) is a receptor for BAFF that, under nonautoimmune conditions, is important for sustaining enduring Ab protection by mediating survival of long-lived PCs but is not required for B cell maturation and homeostasis. Through analysis of two different lupus-prone mouse models deficient in BCMA, we identify BCMA as an important factor in regulating peripheral B cell expansion, differentiation, and survival. We demonstrate that a BCMA deficiency combined with the lpr mutation or the murine lupus susceptibility locus Nba2 causes dramatic B cell and PC lymphoproliferation, accelerated autoantibody production, and early lethality. This study unexpectedly reveals that BCMA works to control B cell homeostasis and self-tolerance in systemic autoimmunity.  相似文献   

6.
UV irradiation is a major natural and artificial stress factor that may cause severe skin injury. UV irradiation induces DNA damage, which, eventually, may lead to cell death, senescence or oncogenic mutations and tumor growth. Wip1 is a phosphatase involved in the regulation of DNA damage response and oncogenic stress. Here, we studied response to UV-B irradiation in wild-type and Wip1-depleted murine cells of epidermal and mesenchymal lineages. We found that both cell types, skin keratinocytes and fibroblasts, responded to UV-B in a similar manner with increased cytotoxicity in Wip1–/–cells. The number of nuclear foci of histone γH2A-X, a DNA damage marker and aWip1 target protein, was higher in Wip1–/–cells before and after UV-B. We observed a twofold increase in cell number with active caspase-3 in Wip1-deficient keratinocytes. Thus, Wip1 deficiency sensitizes cells to UV-B irradiation by promoting cell death, possibly by caspase-3 dependent apoptosis.  相似文献   

7.
Autoantibodies clearly contribute to tissue inflammation in systemic lupus erythematosus. In order to therapeutically target B cells making pathogenic autoantibodies, it is necessary to identify their phenotype. It is also important to understand the defects in B cell repertoire selection that permit pathogenic autoreactive B cells to enter the immunocompetent B cell repertoire. We present the data that both marginal zone and follicular B cells can produce pathogenic autoantibodies. Moreover, we discuss how B cell survival and maturation are regulated centrally prior to antigen activation and in the periphery after antigen activation to form the repertoire that generates the spectrum of circulating antibodies.  相似文献   

8.
When analyzed by flow cytometry, reactivity of IgM autoantibodies in sera from NZB mice to spleen B cells, but not to T cells, from BALB/c mice was remarkably increased after treatment of the cells with Vibrio cholerae neuraminidase. By TLC immunostaining with the antibodies, neither neutral nor acidic glycosphingolipids from both BALB/c and NZB mouse spleens were found to be reactive, but after neuraminidase treatment of the TLC plate, prior to the immunostaining, three components became reactive. All of the reactive glycosphingolipids were found to carry a single sialic acid residue and were at a concentration less than 1.3% of the total lipid-bound sialic acids. Their mobilities on TLC plate were close to those of IV3 NeuAcnLc4Cer, IV3 NeuAcII3 NeuAcGg4Cer, and IV3 NeuAcII3 NeuAc2Gg4Cer. In addition, the monosialogangliosides, which became reactive with the autoantibodies after neuraminidase treatment, were found to be predominantly distributed on B cells from BALB/c mice spleen, but not on T cells by TLC immunostaining. These studies demonstrate that the majority of IgM autoantibodies to spleen lymphocytes in sera from NZB mice might react preferentially to terminal sugar residues of three new glycosphingolipids masked by a single sialic acid on B cells, but not on T cells.  相似文献   

9.
In the (SWR x NZB)F1 mouse model of lupus, we previously localized the critical autoepitopes for nephritogenic autoantibody-inducing Th cells in the core histones of nucleosomes at aa positions 10-33 of H2B and 16-39 and 71-94 of H4. A brief therapy with the peptides administered i.v. to 3-mo-old prenephritic (SWR x NZB)F1 mice that were already producing pathogenic autoantibodies markedly delayed the onset of severe lupus nephritis. Strikingly, chronic therapy with the peptides injected into 18-mo-old (SWR x NZB)F1 mice with established glomerulonephritis prolonged survival and even halted the progression of renal disease. Remarkably, tolerization with any one of the nucleosomal peptides impaired autoimmune T cell help, inhibiting the production of multiple pathogenic autoantibodies. However, cytokine production or proliferative responses to the peptides were not grossly changed by the therapy. Moreover, suppressor T cells were not detected in the treated mice. Most interestingly, the best therapeutic effect was obtained with nucleosomal peptide H416-39, which had a tolerogenic effect not only on autoimmune Th cells, but autoimmune B cells as well, because this peptide contained both T and B cell autoepitopes. These studies show that the pathogenic T and B cells of lupus, despite intrinsic defects in activation thresholds, are still susceptible to autoantigen-specific tolerogens.  相似文献   

10.
Sle1 is a major susceptibility locus in the NZM2410 murine model of systemic lupus erythematosus. When isolated on a C57BL/6 background in the B6.Sle1 congenic strain, Sle1 results in the production of high levels of anti-chromatin IgG Abs, histone-specific T cells, and increased B and T cell activation. We have shown by mixed bone marrow chimeras with allotypic markers that Sle1 is expressed in B cells. Using the same technique, we now show that it is also expressed in T cells. To assess whether Sle1 results in intrinsic defects in B or T cells, we have bred the muMT and Tcralpha(-/-) mutations onto B6.Sle1 resulting in the absence of circulating B cells and alphabeta T cells in B6.Sle1.muMT and B6.Sle1.Tcralpha(-/-), respectively. The immune phenotypes in these two strains were compared with that of B6.Sle1 and B6.muMT or B6.Tcralpha(-/-). Sle1-expressing B cells broke tolerance to chromatin in the absence of T cells, as shown by high levels of anti-ssDNA IgM Abs in B6.Sle1.Tcralpha(-/-) mice, and had an increased expression of activation markers. Conversely, increased expression of activation markers and increased cytokine production were observed in Sle1-expressing T cells in the absence of B cells in B6.Sle1.muMT mice. However, the production of IgG antinuclear Abs required the presence of both T and B cells. These experiments showed that Sle1 expression results in both B and T cells intrinsic defects and demonstrate that the documented involvement of each cell compartment in the production of anti-chromatin Abs corresponds to genetic defects rather than bystander effects.  相似文献   

11.
BAFF inhibition is a new B cell-directed therapeutic strategy for autoimmune disease. Our purpose was to analyze the effect of BAFF/APRIL availability on the naive and Ag-activated B cell repertoires in systemic lupus erythematosus, using the autoreactive germline D42 H chain (glD42H) site-directed transgenic NZB/W mouse. In this article, we show that the naive Vκ repertoire in both young and diseased glD42H NZB/W mice is dominated by five L chains that confer no or low-affinity polyreactivity. In contrast, glD42H B cells expressing L chains that confer high-affinity autoreactivity are mostly deleted before the mature B cell stage, but are positively selected and expanded in the germinal centers (GCs) as the mice age. Of these, the most abundant is VκRF (Vκ16-104*01), which is expressed by almost all IgG anti-DNA hybridomas derived from the glD42H mouse. Competition with nonautoreactive B cells or BAFF/APRIL inhibition significantly inhibited selection of glD42H B cells at the late transitional stage, with only subtle effects on the glD42H-associated L chain repertoire. However, glD42H/VκRF-encoded B cells were still vastly overrepresented in the GC, and serum IgG anti-DNA Abs arose with only a slight delay. Thus, although BAFF/APRIL inhibition increases the stringency of negative selection of the naive autoreactive B cell repertoire in NZB/W mice, it does not correct the major breach in B cell tolerance that occurs at the GC checkpoint.  相似文献   

12.
13.
Bishop GA  Dove WF 《Immunogenetics》1980,10(4):383-393
Resistance to two cultured lines of murine embryonal carcinoma was studied in F1 hybrids constructed between the tumor-syngeneic mouse strain 129/J and several allogeneic strains. Three of four such hybrid strains were significantly more resistant to the multipotent embryonal carcinoma line PCC3 than the tumor-syngeneic 129/J parent strain. All hybrid strains tested showed significantly higher resistance to the nullipotent embryonal carcinoma line F9 than the syngeneic strain. Hybrid resistance to embryonal carcinoma lines does not require a hybrid H-2 complex. Several kinds of evidence indicate that this hybrid resistance has an immunological basis.  相似文献   

14.
Resistance to two cultured lines of murine embryonal carcinoma was studied in F1 hybrids constructed between the tumor-syngeneic mouse strain 129/J and several allogeneic strains. Three of four such hybrid strains were significantly more resistant to the multipotent embryonal carcinoma line PCC3 than the tumor-syngeneic 129/J parent strain. All hybrid strains tested showed significantly higher resistance to the nullipotent embryonal carcinoma line F9 than the syngeneic strain.Hybrid resistance to embryonal carcinoma lines does not require a hybridH-2 complex.Several kinds of evidence indicate that this hybrid resistance has an immunological basis.  相似文献   

15.
Introduction of the xid genetic mutation into strains of mice (NZB, MRL/1, BXSB), which are normally susceptible to a lupus-like disorder, significantly delays the onset of disease and reduces the polyclonal B-cell activation characteristic of the lupus-prone strains. Evidence is presented here which shows that B cells from NZB and MRL/1 mice which carry the xid mutation have drastically reduced responses to T-cell-derived B-cell-growth- and differentiation-inducing activities. These results are in accord with a theory that acceleration of lupus onset may be due to overproduction of and/or increased responsiveness to B-cell activation signals.  相似文献   

16.
A two-step culture system was used to investigate the role of chondroitin sulfate (CS) B, which is mitogenic to B cells, in differentiation of B cells. Mouse spleen B cells were incubated for 3 days with CSB in the presence of interleukin (IL)-4 and IL-5. After washing, the cells were replated at 10(5) viable cells/well and recultured without CSB in the presence of IL-4 and IL-5. CSB dose-dependently increased IgM production, the greatest enhancement being 450%. Dextran sulfate had a similar effect, whereas other glycosaminoglycans, CSA, CSC, heparin and hyaluronic acid, were marginally effective. Treatment of B cells with CSB resulted in increases in the number of IgM-secreting cells and numbers of CD138-positive cells and CD45R/B220-negative cells. CSB-induced IgM production was inhibited by the protein kinase C (PKC) inhibitor GF109203X but not by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. These results demonstrated that CSB promoted differentiation of B cells in the presence of IL-4 and IL-5 and suggested that PKC but not PI3K is crucial for CSB-induced IgM production.  相似文献   

17.
Lupus glomerulonephritis is initiated by deposition of IgG-containing immune complexes in renal glomeruli. FcR engagement by immune complexes (IC) is crucial to disease development as uncoupling this pathway in FcRgamma(-/-) abrogates inflammatory responses in (NZB x NZW)F1 mice. To define the roles of FcR-bearing hemopoietic cells and of kidney resident mesangial cells in pathogenesis, (NZB x NZW)F1 bone marrow chimeras were generated. Nephritis developed in (NZB x NZW)F1 mice expressing activating FcRs in hemopoietic cells. Conversely, recipients of FcRgamma(-/-) bone marrow were protected from disease development despite persistent expression of FcRgamma in mesangial cell populations. Thus, activating FcRs on circulating hemopoietic cells, rather than on mesangial cells, are required for IC-mediated pathogenesis in (NZB x NZW)F1. Transgenic FcRgamma(-/-) mice expressing FcRgamma limited to the CD11b+ monocyte/macrophage compartment developed glomerulonephritis in the anti-glomerular basement disease model, whereas nontransgenic FcRgamma(-/-) mice were completely protected. Thus, direct activation of circulating FcR-bearing myeloid cells, including monocytes/macrophages, by glomerular IC deposits is sufficient to initiate inflammatory responses.  相似文献   

18.
19.
RANKL-RANK signaling regulates numerous physiologic processes such as bone remodeling, lymph node organogenesis, central thermoregulation, and formation of a lactating mammary gland in pregnancy. Recently, a receptor activator of NF-κB ligand (RANKL)-blocking Ab has been approved for human use in potentially millions of osteoporosis and cancer patients. However, germline deficiencies in RANKL or receptor activator of NF-κB (RANK) also lead to strong B cell defects in mice and human patients, suggesting that RANKL-RANK inhibition could interfere with B cell physiology and thereby trigger immunologic side-effects. To address this key question--that is, whether RANKL-RANK signaling affects B cell physiology directly or the observed defects are secondary because of the severe osteopetrosis--we generated B cell-specific RANK knockout mice. We show that B cells deficient for RANK undergo normal development and do not show any obvious defects in Ab secretion, class switch recombination, or somatic hypermutation. Our data indicate that ablation of the RANKL-RANK pathway has no direct adverse effect on B cell physiology.  相似文献   

20.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号