首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: Three hundred and two enterococci were isolated from food, animal and clinical samples in order to evaluate the incidence of vancomycin‐resistant enterococci (VRE) and bacteriocin, cytolysin, haemolysin, gelatinase production. Methods and Results: Among the isolates, 27 (8·9%) were VRE, and 17 (63%) of these showed, by the deferred antagonism method, bacteriocin production against Gram‐positive and some Gram‐negative indicators. Eight bacteriocin producers displayed by polymerase chain reaction an enterocin structural gene: six Enterococcus faecium the Enterocin A, two Enterococcus faecalis the Enterocin P genes. The enterocins AS‐48, 31, L50 and 1071A/B genes were not found. Regarding the virulence factors, two VRE produced gelatinase and seven were haemolytic. Gelatinase gelE gene was found in 19 strains and cytolysin cylLL gene in eight. Among the strains showing the cylLL gene, only two E. faecalis expressed a β‐haemolysis. Conclusions: Our results showed the persistence of VRE in food, animal and clinical samples. Many of these strains displayed antibacterial activity and sometimes different components of virulence, which could emphasize their pathogenicity. Significance and Impact of the Study: This work indicates the need of a constant monitoring of enterococci in order to assess their possible pathogenic properties. The strains of interest in the food industry or used as probiotics should be tested for antibiotic resistance and virulence traits.  相似文献   

2.
Aim: The study aimed to evaluate the effect of the bacteriocins produced by Lactobacillus sakei CWBI‐B1365 and Lactobacillus curvatus CWBI‐B28 on the growth and survival of Listeria monocytogenes in raw beef and poultry meat. Methods and Results: The sakacin P and sakacin G structural genes were identified in Lact. curvatus CWBI‐B28 and Lact. sakei CWBI‐B1365 using PCR amplification, respectively. The effect of the two bacteriocinogenic strains either alone or together, and that of the nonbacteriocin‐producing strain Lact. sakei LMG17302, on the growth of L. monocytogenes was evaluated in beef and poultry meat. In raw beef, the pathogenic bacteria were inhibited by the bacteriocinogenic strains. The bacteriocinogenic strains had no activity in raw chicken meat when inoculated separately, while they showed a clear anti‐Listeria effect when applied together. Conclusion: Sakacin G producing Lact. sakei and sakacin P producing Lact. curvatus may be applied in raw beef to inhibit L. monocytogenes. In poultry meat, the inhibition of L. monocytogenes could only be achieved by a combined application of these bacteriocin‐producing strains. Significance and Impact of the Study: In some meat products, the combined application of different class IIa bacteriocin producing lactic acid bacterium can enhance the anti‐listerial activity.  相似文献   

3.
Aims: The isolation and partial characterization of anti‐Listeria bacteriocin producing strains present in milk from areas of northern Greece in view of their potential use as protective cultures in food fermentations. Methods and Results: Three hundred and thirty‐two isolates were obtained from milk samples intended for Feta cheese production and gathered from 40 individual producers in Northern Greece. Isolates with anti‐Listeria activity were identified by multiplex PCR as Enterococcus faecium and grouped by (GTG)5‐PCR. The genomes of the anti‐Listeria isolates were examined for the presence of known enterocin genes and major virulence genes by means of specific PCR. At least three known enterocin encoding genes were present in the genome of each of the 17 isolates. None of the 17 isolates harboured any of the virulence genes tested for or exhibited haemolytic activity. Conclusions: Enterococcus faecium was the dominant anti‐Listeria species in the milk samples. The isolates had the potential of multiple bacteriocin production and did not exhibit some important elements of virulence. Significance and Impact of the Study: Enterococci present in milk of this area of northern Greece may be partly responsible for the safety of Feta cheese and could be useful for the production of anti‐Listeria protective cultures.  相似文献   

4.
In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.  相似文献   

5.
Enterocin A and B in Enterococcus faecium CTC492 were co-induced by the different factors assayed in this study (r = 0.93) and followed primary metabolic kinetics. Enterocin production was significantly inhibited by sausage ingredients and additives, with the exception of nitrate. The addition of sodium chloride and pepper decreased production 16-fold. The temperature and pH influenced enterocin production, with optima between 25 and 35 degrees C, and from 6.0 to 7.5 of initial pH. The maximum activity was achieved, under favourable growth conditions, with MRS supplemented with sucrose (2%) plus glucose (0.25%) and Tween-80 (1%). MRS concentration, NaCl plus pepper addition, absence of Tween-80 in the growth medium, incubation at 45 degrees C and an initial pH under 5.5 were detrimental to bacteriocin production. Stress conditions did not favour enterocin production. Desadsorption was Tween-dependent. Enterocin A activity in the crude extracts stored at -80 degrees C was better preserved than enterocin B (when tested against their specific indicator strain), but anti-listerial activity remained intact. Applied as anti-listerial additives in dry fermented sausages, enterocins significantly diminished Listeria counts by 1. 13 log (P < 0.001), while Enterococcus faecium CTC492 added as starter culture did not significantly reduce Listeria counts (P > 0. 1) compared with the standard starter culture (Bac-). Enterocins A and B could be considered as extra biopreservative hurdles for listeria prevention in dry fermented sausages.  相似文献   

6.
Aim: To screen five strains of lactic acid bacteria (LAB) isolated from rye sourdoughs for the potential production of antimicrobial substances. Methods and Results: Lactobacillus sakei KTU05‐06, Pediococcus acidilactici KTU05‐7, Pediococcus pentosaceus KTU05‐8, KTU05‐9 and KTU05‐10 isolated from rye sourdoughs were investigated for the production of bacteriocin‐like inhibitory substances (BLIS). The supernatants of analysed LAB inhibited growth of up to 15 out of 25 indicator bacteria strains as well as up to 25 out of 56 LAB strains isolated from rye sourdoughs. Moreover, these five LAB were active against ropes‐producing Bacillus subtilis and the main bread mould spoilage causing fungi –Aspergillus, Fusarium, Mucor and Penicillium. Lactobacillus sakei KTU05‐6 demonstrated the best antibacterial properties and is resistant towards heat treatment even at 100°C for 60 min. Conclusions: The use of LAB‐producing antibacterial substances may be a good choice as a co‐starter culture to ensure the stability of sourdoughs and to avoid the bacterial and fungi spoilage of the end product. Significance and Impact of the Study: The antimicrobial compounds designated as sakacin KTU05‐6, pediocin KTU05‐8 KTU05‐9, KTU05‐10 and AcKTU05‐67 were not identical to any other known BLIS, and this finding leads up to the assumption that they might be the novel.  相似文献   

7.
Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.  相似文献   

8.
The production of bacteriocins from cheap substrates could be useful for many food industrial applications. This study aimed at determining the conditions needed for optimal production of enterocins SD1, SD2, SD3 and SD4 secreted by Enterococcus faecium strains SD1, SD2, SD3 and SD4, respectively. To our knowledge, this is the first use of cheese whey—a low-cost milk by-product—as a substrate for bacteriocin production by E. faecium; skimmed milk and MRS broths were used as reference media. This cheese manufacturing residue proved to be a promising substrate for the production of bacteriocins. However, the levels of secreted antimicrobial compounds were lower than those achieved by E. faecium strains in MRS broth. Bacteriocin production was affected strongly by physical and chemical factors such as growth temperature, time of incubation, pH, and the chemical composition of the culture medium. The optimal temperature and time of incubation supporting the highest bacteriocin production was determined for each strain. Different types, sources and amounts of organic nitrogen, sugar, and inorganic salts played an essential role in bacteriocin secretion. E. faecium strains SD1 and SD2—producing high bacteriocin levels both in cheese whey and skimmed milk—could be of great interest for potential applications in cheese-making.  相似文献   

9.
Enterococcus faecalis WHE 96, a strain isolated from soft cheese based on its anti-Listeria activity, produced a 5,494-Da bacteriocin that was purified to homogeneity by ultrafiltration and cation-exchange and reversed-phase chromatographies. The amino acid sequence of this bacteriocin, named enterocin 96, was determined by Edman degradation, and its structural gene was sequenced, revealing a double-glycine leader peptide. After a comparison with other bacteriocins, it was shown that enterocin 96 was a new class II bacteriocin that showed very little similarity with known structures. Enterocin 96 was indeed a new bacteriocin belonging to class II bacteriocins. The activity spectrum of enterocin 96 covered a wide range of bacteria, with strong activity against most gram-positive strains but very little or no activity against gram-negative strains.Bacteriocins are a heterogeneous group of ribosomally synthesized antibacterial peptides that inhibit strains and species that are usually, but not always, closely related to the producing bacteria (16). Enterococcal bacteriocins, often termed enterocins, have been widely investigated, mainly because they are active against gram-positive food-borne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. The vast majority of enterocins are active only against gram-positive bacteria (10, 17); however, some exceptions with broad activity spectra described in recent years showed the ability to inhibit the growth of gram-negative microorganisms (5, 11, 13).The increasing number of enterocins reported in the literature and the emergence of novel structures that could not be included in classical bacteriocin classifications (12, 14, 17) prompted the grouping of enterocins into a new four-class scheme by Franz et al. (8). Most enterocins known so far were included in class II (small, nonlantibiotic peptides), which was divided into three subgroups: class II.1, enterocins of the pediocin family; class II.2, enterocins synthesized without a leader peptide; and class II.3, other linear, non-pediocin-like enterocins.The fact that numerous Enterococcus strains found in a variety of fermented and nonfermented foods produce bacteriocins, often more than one per strain, has sparked interest in their use in food preservation (4). Despite the concerns over enterococci as opportunistic pathogens and indicators of fecal contamination, they are indigenous species in the gastrointestinal tract and have long been used as human and/or animal probiotics (1, 2, 7).In this work, we describe and characterize a new class II enterocin produced by Enterococcus faecalis WHE 96, previously isolated from Munster cheese, for its anti-Listeria properties. The amino acid sequence, the structural gene, and the spectrum of activity of this bacteriocin are reported.  相似文献   

10.
The bacteriocin production byEnterococcus faecium strain in cheese milk and cheese was demonstrated. Purified enterocin CCM 4231 exhibited an anti-listerial effect during Saint-Paulin cheese manufacture. During cheese production the strain grew to a final concentration of 10.1±0.01 log CFU per mL per g in cheese. Then only a slight decrease of the cell concentration was noticed during ripening and was almost stable for 8 weeks. No significant differences in pH were observed between the experimental and reference cheeses. Bacteriocin production during cheese manufacture was detected only in milk samples and curd, reaching a level of 100 AU/mL. After addition of purified enterocin CCM 4231 (concentration 3200 AU/mL) into the experimental cheese, the initial concentration of 6.7±0.06 log CFU per mL ofListeria monocytogenes Ohio was reduced up to 1.9±0.01 log CFU per mL per g. After 6 weeks and at the end of the experiment the difference of surviving cells ofL. monocytogenes Ohio in ECH was only one or 0.7 log cycle compared to the control cheese. Although enterocin CCM 4231 partially inhibitedL. monocytogenes in Saint-Paulin cheese manufacture, an inhibitory effect of enterocin added was shown in 1-week cheese; however, it was not possible to detect bacteriocin activity by the agar spot test. The traditional fermentation and ripening process was not disturbed, resulting in acceptable end-products, including sensory aspects.  相似文献   

11.
The aim of the present study was to ascertain the potency of anti-listerial bacteriocin produced by lactic acid bacteria (LAB) isolated from indigenous samples of dahi, dried fish, and salt-fermented cucumber. A total of 231 LAB isolates were obtained from the samples, of which 51 isolates displayed anti-listerial activity. The anti-listerial LAB were identified by PCR as Lactobacillus sp., Pediococcus sp., Enterococcus sp., and Lactococcus sp. PCR also enabled the detection of Class IIa bacteriocin-encoding genes such as enterocin A, pediocin, and plantaricin A in some of the LAB isolates. The culture filtrate from anti-listerial LAB isolates demonstrated bacteriocin-like inhibitory substance (BLIS) against common Gram-positive pathogenic bacteria such as Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus, and partial characterization of BLIS confirmed the production of bacteriocin by the LAB isolates. Sensitive fluorescence-based assays employing specific probes indicated the comparative potencies of the bacteriocin and clearly revealed the membrane-targeted anti-listerial activity of the purified bacteriocin produced by selected LAB isolates. The food application potential of plantaricin A produced by a native isolate Lactobacillus plantarum CRA52 was evidenced as the bacteriocin suppressed the growth of Listeria monocytogenes Scott A inoculated in paneer samples that were stored at 8?°C for 5?days.  相似文献   

12.
13.
Aims: Listeria monocytogenesΔgadD1 and ΔlisK mutants display enhanced and reduced sensitivity, respectively, to the food preservative nisin in laboratory media. However, the behaviour of these strains in a nisin‐containing food has not been assessed. Here we use cottage cheese as a model food to address this issue. Materials and Results: Antibiotic‐resistant forms of the wild‐type and mutant strains were employed to investigate the behaviour of multiple strains in a single food sample, thereby eliminating the problem of intersample variation. Using this approach, it was established that percentage survival of the ΔlisK mutant was greater than the parent strain in the absence of nisin and that this relative difference became even more dramatic in cottage cheese supplemented with nisin. The numbers of the ΔgadD1 mutant decreased more rapidly than the parent in cottage cheese without nisin, but surprisingly this trend was reversed in nisin‐supplemented cheese. Upon the addition of 10 mmol l?1 monosodium glutamate, a substrate for the glutamate decarboxylase (GAD) system, the wild‐type LO28 strain regained its relative advantage over ΔgadD1. Conclusions: Care needs to be taken when predicting the behaviour of mutants of L. monocytogenes with altered resistance to nisin in food as experiments in laboratory media are not always a good indicator of how the strains will behave in such food environments. Significance and impact of the Study: This study further emphasizes the importance of utilizing food matrices to confirm observations made using laboratory media.  相似文献   

14.
AIMS: Isolation, characterization and identification of lactic acid bacteria (LAB) from artisanal Zlatar cheese during the ripening process and selection of strains with good technological characteristics. METHODS AND RESULTS: Characterization of LAB was performed based on morphological, physiological and biochemical assays, as well as, by determining proteolytic activity and plasmid profile. rep-polymerase chain reaction (PCR) analysis and 16S rDNA sequencing were used for the identification of LAB. PCR analysis was performed with specific primers for detection of the gene encoding nisin production. Strains Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Enterococcus faecium and Enterococcus faecalis were the main groups present in the Zlatar cheese during ripening. CONCLUSIONS: Temporal changes in the species were observed during the Zlatar cheese ripening. Mesophilic lactobacilli are predominant microflora in Zlatar cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study we determined that Zlatar cheese up to 30 days old could be used as a source of strains for the preparation of potential starter cultures in the process of industrial cheese production. As the Serbian food market is adjusting to European Union regulations, the standardization of Zlatar cheese production by using starter culture(s) based on autochtonous well-characterized LAB will enable the industrial production of this popular cheese in the future.  相似文献   

15.
Cottage cheese whey is a cheese industry by-product still rich in proteins and lactose. Its recycling is seldom cost-effective. In this work we show that the lactose-utilizing yeast Kluyveromyces lactis, engineered for production of recombinant human lysozyme, can be grown in cottage cheese whey, resulting in high-level production of the heterologous protein (125 μg/ml).  相似文献   

16.
Listeria monocytogenes is a food‐borne pathogen able to cause serious disease in human and animals. Listeriolysin O (LLO), a major virulence factor secreted by this bacterium, is a vacuole‐specific lysin that facilitates bacterial entrance into the host cytosol. Thus, LLO plays a key role in the translocation and intracellular spread of L. monocytogenes. To study the effect of LLO on virulence and immunopotency, a LLO‐deficient L. monocytogenes mutant was constructed using a shuttle vector followed by homologous recombination. The mutant strain had lost hemolytic activity, which resulted in an extremely reduced virulence, 5 logs lower than that of the parent strain, yzuLM4, in BALB/c mice. The number of bacteria detected in the spleens and livers of mice infected with the mutant was greatly reduced, and the bacteria were rapidly eliminated by the host. Kinetics studies in this murine model of infection showed that the invasion ability of the mutant strain was much lower than that of the parent strain. Moreover, immunization with the mutant strain conferred protective immunity against listerial infection. In particular, stimulation with Ag85B240‐259, strong specific Th1 type cellular immunity was elicited by vaccination C57BL/6 mice with hly deficient strain delivering Mycobacterium tuberculosis fusion antigen Ag85B‐ESAT‐6 via intravenous inoculation. These results clearly show that highly attenuated LLO‐deficient L. monocytogenes is an attractive vaccine carrier for delivering heterologous antigens.  相似文献   

17.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

18.
A Lactobacillus sakei strain, designated as I151 and isolated from naturally fermented sausages, was found to produce the sakacin P bacteriocin which is active against Listeria monocytogenes. In this study, we performed the sequencing of the gene cluster involved in the production of the sakacin P, and we followed the expression of the sppA gene, encoding for the bacteriocin, in vitro, using Rogosa–Sharpe medium, and in situ, inoculating the strain in fermented sausages as starter culture. The results obtained underlined the high similarity (>99%) of the entire sakacin P gene cluster from the L. sakei studied here with others present in strains of L. sakei already described. Moreover, from the expression experiments, it was shown that the gene is expressed during the exponential phase and that production procedures typical of fermented sausages are not turning off the expression of the gene encoding the bacteriocin. The capability of the strain studied to produce sakacin P during production is considered an advantage for its use as starter culture to improve the safety aspect of traditional fermented sausages produced in Italy.  相似文献   

19.
Aim: To determine growth initiation differences of Listeria monocytogenes between a cheesemaking context, milk and tryptic soy broth (TSB). Methods and Results: A laboratory‐scale cheese was made with a mix of two strains of L. monocytogenes at four initial pH values, five water activity (aw) values and two contamination levels at 30°C. Counts of L. monocytogenes were determined at time 0 and after 8 h of cheese manufacture. Milk and TSB at the same pH and aw conditions were inoculated with the L. monocytogenes mix in multi‐well plates. Growth was determined by plating each well onto Agosti & Ottaviani Listeria Agar after 8 h of incubation at 30°C. Each condition was repeated six times, and growth initiation probability was modelled with logistic regression models. Growth initiation boundaries were obtained for each matrix type. The results showed that the growth limits were matrix dependent. In the three matrix types, aw was the most important factor affecting the probability of growth initiation. Contamination level affected growth TSB and cheesemaking conditions. Conclusions: The interface wideness and position in cheese, milk and TSB were dissimilar, indicating that the use of models evaluated in TSB or milk could not be used to predict the behaviour of L. monocytogenes under cheesemaking conditions. Significance and Impact of the Study: Predictive models generated in liquid media are not necessarily adaptable to solid food, and the generation of real food models is necessary.  相似文献   

20.
  1. Download : Download high-res image (84KB)
  2. Download : Download full-size image
Highlights► Factors that limit bacteriocin application in the food industry may be addressed in a number of ways. ► Conjugation is widely exploited to facilitate bacteriocin production by specific LAB. ► Genetic manipulation can generate LAB producing greater concentrations and bacteriocin numbers. ► Bioengineering can greatly increase LAB bacteriocin activity and inhibitory spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号