首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systems biology of the metabolic network regulated by the Akt pathway   总被引:1,自引:0,他引:1  
Cancer has been proposed as an example of systems biology disease or network disease. Accordingly, tumor cells differ from their normal counterparts more in terms of intracellular network dynamics than single markers. Here we shall focus on a recently recognized hallmark of cancer, the deregulation of cellular energetics. The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been confirmed as an essential step toward cell transformation. We will consider how the effects of Akt activation are connected with cell metabolism; more precisely, we will review existing metabolic models and discuss the current knowledge available to construct a kinetic model of the most relevant metabolic processes regulated by the PI3K/Akt pathway. The model will enable a systems biology approach to predict the metabolic targets that may inhibit cell growth under hyper activation of Akt.  相似文献   

2.
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders.Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.  相似文献   

3.

Background

Alterations on glucose consumption and biosynthetic activity of amino acids, lipids and nucleotides are metabolic changes for sustaining cell proliferation in cancer cells. Irrevocable evidence of this fact is the Warburg effect which establishes that cancer cells prefers glycolysis over oxidative phosphorylation to generate ATP. Regulatory action over metabolic enzymes has opened a new window for designing more effective anti-cancer treatments. This enterprise is not trivial and the development of computational models that contribute to identifying potential enzymes for breaking the robustness of cancer cells is a priority.

Methodology/Principal Findings

This work presents a constraint-base modeling of the most experimentally studied metabolic pathways supporting cancer cells: glycolysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative phosphorylation. To evaluate its predictive capacities, a growth kinetics study for Hela cell lines was accomplished and qualitatively compared with in silico predictions. Furthermore, based on pure computational criteria, we concluded that a set of enzymes (such as lactate dehydrogenase and pyruvate dehydrogenase) perform a pivotal role in cancer cell growth, findings supported by an experimental counterpart.

Conclusions/Significance

Alterations on metabolic activity are crucial to initiate and sustain cancer phenotype. In this work, we analyzed the phenotype capacities emerged from a constructed metabolic network conformed by the most experimentally studied pathways sustaining cancer cell growth. Remarkably, in silico model was able to resemble the physiological conditions in cancer cells and successfully identified some enzymes currently studied by its therapeutic effect. Overall, we supplied evidence that constraint-based modeling constitutes a promising computational platform to: 1) integrate high throughput technology and establish a crosstalk between experimental validation and in silico prediction in cancer cell phenotype; 2) explore the fundamental metabolic mechanism that confers robustness in cancer; and 3) suggest new metabolic targets for anticancer treatments. All these issues being central to explore cancer cell metabolism from a systems biology perspective.  相似文献   

4.
Pancreatic ductal adenocarcinoma is a devastating disease that represents an important health problem. It spreads rapidly at a time when patients have relatively few symptoms and consequently is often only detected at an advanced stage when treatment options are limited. Rapid developments in technology and bioinformatics have recently led to a surge in proteomics-based cancer research. Comparative analysis of protein profiles from nonmalignant and malignant pancreas cells or tissue, or from different stages of pancreatic cancer, potentially offer unique insight into the biology of this tumor type. Furthermore, proteomic approaches may provide novel diagnostic or therapeutic markers for this disease. Although such analyses are still in their infancy, they show great potential in the ongoing battle against this dismal disease.  相似文献   

5.
Pancreatic ductal adenocarcinoma is a devastating disease that represents an important health problem. It spreads rapidly at a time when patients have relatively few symptoms and consequently is often only detected at an advanced stage when treatment options are limited. Rapid developments in technology and bioinformatics have recently led to a surge in proteomics-based cancer research. Comparative analysis of protein profiles from nonmalignant and malignant pancreas cells or tissue, or from different stages of pancreatic cancer, potentially offer unique insight into the biology of this tumor type. Furthermore, proteomic approaches may provide novel diagnostic or therapeutic markers for this disease. Although such analyses are still in their infancy, they show great potential in the ongoing battle against this dismal disease.  相似文献   

6.
Protein O-GlcNAcylation is a specific form of protein glycosylation that targets a wide range of proteins with important functions. O-GlcNAcylation is known to be deregulated in cancer and has been linked to multiple aspects of cancer pathology. Despite its ubiquity and importance, the current understanding of the role of O-GlcNAcylation in the stress response remains limited. In this study, we performed a quantitative chemical proteomics-based open study of the O-GlcNAcome in HeLa cells, and identified 163 differentially-glycosylated proteins under starvation, involving multiple metabolic pathways. Among them, fatty acid metabolism was found to be targeted and subsequent analysis confirmed that fatty acid synthase (FASN) is O-GlcNAcylated. O-GlcNAcylation led to enhanced de novo fatty acid synthesis (FAS) activity, and fatty acids contributed to the cytoprotective effects of O-GlcNAcylation under starvation. Moreover, dual inhibition of O-GlcNAcylation and FASN displayed a strong synergistic effect in vitro in inducing cell death in cancer cells. Together, the results from this study provide novel insights into the role of O-GlcNAcylation in the nutritional stress response and suggest the potential of combining inhibition of O-GlcNAcylation and FAS in cancer therapy.  相似文献   

7.
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.  相似文献   

8.
The metabolic engineer's toolbox, comprising stable isotope tracers, flux estimation and analysis, pathway identification, and pathway kinetics and regulation, among other techniques, has long been used to elucidate and quantify pathways primarily in the context of engineering microbes for producing small molecules of interest. Recently, these tools are increasingly finding use in cancer biology due to their unparalleled capacity for quantifying intracellular metabolism of mammalian cells. Here, we review basic concepts that are used to derive useful insights about the metabolism of tumor cells, along with a number of illustrative examples highlighting the fundamental contributions of these methods to elucidating cancer cell metabolism. This area presents unique opportunities for metabolic engineering to expand its portfolio of applications into the realm of cancer biology and help develop new cancer therapies based on a new class of metabolically derived targets. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

9.
Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets and novel disease markers for colon cancer. To perform a proteomics-based inventory of these so-called "anchorless" surface proteins, intact colon adenocarcinoma SW480 cells were labeled with membrane-impermeable biotin after which only soluble biotinylated proteins were isolated and identified by nanoLC-MS/MS. Computer-assisted analysis predicted that only 9 of the 97 identified surface-exposed proteins have predicted secretory signal peptides, whereas 2 other proteins have a putative transmembrane segment. Of the 9 proteins with putative signal peptides, 1 was predicted to be retained at the cell surface by a GPI-anchor, whereas 5 other proteins contained an ER-retention motif (KDEL) that should prevent them from being sorted to the cell surface. The remaining 86 soluble "surface" proteins lack known export signals and the possibility that these proteins are candidate substrates of non-classical transporters or exported by unconventional mechanisms is discussed. Alternatively, the large number of "intracellular" and ER-resident proteins may imply that biotinylation approaches are not only specific for surface proteins, but also biased against a certain subset of non-surface proteins. This underscores the importance of post-proteomic verification of proteomics-based inventories on surface-exposed proteins, which eventually should reveal to which extent non-classical export and retention mechanisms contribute to the sorting of "anchorless" proteins to the surface of colon tumor cells.  相似文献   

10.
One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated with the variable responses to various death-inducing treatments. Systems biology models offer us the opportunity to take a more synoptic view of the cell death process to identify multifactorial determinants of the cell death decision. Finally, with an eye toward ‘systems pharmacology'', we discuss how leveraging this new understanding should help us develop combination treatment strategies to compel cancer cells toward apoptosis by manipulating either the biochemical state of cancer cells or the dynamics of signal transduction.  相似文献   

11.
In the last decade, reconstruction and applications of genome-scale metabolic models have greatly influenced the field of systems biology by providing a platform on which high-throughput computational analysis of metabolic networks can be performed. The last two years have seen an increase in volume of more than 33% in the number of published genome-scale metabolic models, signifying a high demand for these metabolic models in studying specific organisms. The diversity in modeling different types of cells, from photosynthetic microorganisms to human cell types, also demonstrates their growing influence in biology. Here we review the recent advances and current state of genome-scale metabolic models, the methods employed towards ensuring high quality models, their biotechnological applications, and the progress towards the automated reconstruction of genome-scale metabolic models.  相似文献   

12.
自20世纪90年代初期诞生以来,代谢工程历经了30年的快速发展。作为代谢工程的首选底盘细胞之一,酿酒酵母细胞工厂已被广泛应用于大量大宗化学品和新型高附加值生物活性物质的生物制造,在能源、医药和环境等领域取得了巨大的突破。近年来,合成生物学、生物信息学以及机器学习等相关技术也极大地促进了代谢工程的技术发展和应用。文中回顾了近30年来酿酒酵母代谢工程重要的技术发展,首先总结了经典代谢工程的常用方法和策略,以及在此基础上发展而来的系统代谢工程和合成生物学驱动的代谢工程技术。最后结合最新技术发展趋势,展望了未来酿酒酵母代谢工程发展的新方向。  相似文献   

13.
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general—and antitumor immunity in particular—is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein-coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.  相似文献   

14.
Despite the lifetimes that increased in breast cancers due to the the early screening programs and new therapeutic strategies, many cases still are being lost due to the metastatic relapses. For this reason, new approaches such as the proteomic techniques have currently become the prime objectives of breast cancer researches. Various omic-based techniques have been applied with increasing success to the molecular characterisation of breast tumours, which have resulted in a more detailed classification scheme and have produced clinical diagnostic tests that have been applied to both the prognosis and the prediction of outcome to the treatment. Implementation of the proteomics-based techniques is also seen as crucial if we are to develop a systems biology approach in the discovery of biomarkers of the early diagnosis, prognosis and prediction of the outcome of the breast cancer therapies. In this review, we discuss the studies that have been conducted thus far, for the discovery of diagnostic, prognostic and predictive biomarkers, and evaluate the potential of the discriminating proteins identified in this research for clinical use as breast cancer biomarkers.  相似文献   

15.
Autoantibody signature in human ductal pancreatic adenocarcinoma   总被引:1,自引:0,他引:1  
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by rapid progression, invasiveness, and resistance to treatment. It is the fourth leading cause of cancer death with a 2% 5-year survival rate. Biomarkers for its early detection are lacking. This study was designed to use a proteomics-based approach as a means of identifying antigens that elicit a humoral response in PDAC patients. Antibodies against PDAC-associated antigens are useful for early cancer diagnosis and therapy. Proteins from PDAC cell lines were separated by 2-DE, and the serum IgG reactivity of 70 PDAC patients, 40 healthy subjects (HS), 30 non-PDAC tumor patients, and 15 chronic pancreatitis (CP) patients was tested by Western blot analysis. Spots specifically recognized by PDAC sera and revealed by mass spectrometry corresponded to metabolic enzymes or cytoskeletal proteins. Most were up-regulated in PDAC tissues. Thus, it seems that metabolic enzymes and cytoskeletal proteins are specific targets of the humoral response during PDAC. The results of further studies of these serological-defined antigens could be of diagnostic and therapeutic significance in PDAC.  相似文献   

16.
Ho CL  Mou TY  Chiang PS  Weng CL  Chow NH 《BioTechniques》2005,38(2):267-273
We constructed a mini chamber system that was able to maintain cell culture on a microscope for long periods. It is a modified closed system with medium perfusion and CO2 circulation. The closed CO2 circulation and ample air inside the chamber distinguish it from other closed systems. Using different cell lines, the system was shown to be able to support long-term, time-lapse recording. After 229 hours of time-lapse recording, A2058 cells (a melanoma cell line) became overconfluent but still multiplied. Many CAD cells (a murine neuron-like cell line) still moved their cell bodies and kept their neurite-like processes after 28 days of recording. The entire healing process of a scratch-wounded 124 (a bladder cancer cell line) monolayer can be monitored. Such a modified closed system should find many applications in developmental biology, cell biology, and cancer biology where long-term, time-lapse recording is required or when the health of cells is important.  相似文献   

17.
In the emerging field of synthetic biology, scientists are focusing on designing and creating functional devices, systems, and organisms with novel functions by engineering and assembling standardised biological building blocks. The progress of synthetic biology has significantly advanced the design of functional gene networks that can reprogram metabolic activities in mammalian cells and provide new therapeutic opportunities for future gene- and cell-based therapies. In this review, we describe the most recent advances in synthetic mammalian gene networks designed for biomedical applications, including how these synthetic therapeutic gene circuits can be assembled to control signalling networks and applied to treat metabolic disorders, cancer, and immune diseases. We conclude by discussing the various challenges and future prospects of using synthetic mammalian gene networks for disease therapy.  相似文献   

18.

Background

Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells.

Results

Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement.

Conclusion

Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis.  相似文献   

19.
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, water‐soluble tetrazolium salt and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide, which were originally developed to determine cell toxicity, are used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, these assays were applied in 945 publications over the past 14 years to examine the proliferative behaviour of diverse cell types. In these studies, however, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared the metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and the fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over‐estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.  相似文献   

20.
O I Epifanova 《Tsitologiia》1979,21(12):1379-1396
This review concerns the modern trends and experimental approaches to the study of cell cycle (cell population kinetics, cell structure and functions at various steps of the cycle,, etc.) and their input into the current views of cell proliferation controls. The resting state of the cell is considered and metabolic features of proliferating and resting cells are compared. Evidence is presented that resting cells are metabolically active and less resistant to the damaging factors that it has been previously supposed. The importance of this finding for biology and medicine, especially for cancer chemotherapy, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号