首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls. These modules target crystalline cellulose (type A) and are located in families 1, 2a, 3a, and 10 (CBM1, CBM2a, CBM3a, and CBM10, respectively); internal regions of amorphous cellulose (type B; CBM4-1, CBM17, CBM28); and the ends of cellulose chains (type C; CBM9-2). Type A CBMs bound particularly effectively to secondary cell walls, although they also recognized primary cell walls. Type A CBM2a and CBM10, derived from the same enzyme, displayed differential binding to cell walls depending upon cell type, tissue, and taxon of origin. Type B CBMs and the type C CBM displayed much weaker binding to cell walls than type A CBMs. CBM17 bound more extensively to cell walls than CBM4-1, even though these type B modules display similar binding to amorphous cellulose in vitro. The thickened primary cell walls of celery collenchyma showed significant binding by some type B modules, indicating that in these walls the cellulose chains do not form highly ordered crystalline structures. Pectate lyase treatment of sections resulted in an increased binding of cellulose-directed CBMs, demonstrating that decloaking cellulose microfibrils of pectic polymers can increase CBM access. The differential recognition of cell walls of diverse origin provides a biological rationale for the diversity of cellulose-directed CBMs that occur in cell wall hydrolases and conversely reveals the variety of cellulose microstructures in primary and secondary cell walls.  相似文献   

2.
Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Although xyloglucan, which includes a backbone of beta-1,4-glucan decorated primarily with xylose residues, is a key component of the plant cell wall, CBMs that bind to this polymer have not been identified. Here we showed that the C-terminal domain of the modular Clostridium thermocellum enzyme CtCel9D-Cel44A (formerly known as CelJ) comprises a novel CBM (designated CBM44) that binds with equal affinity to cellulose and xyloglucan. We also showed that accommodation of xyloglucan side chains is a general feature of CBMs that bind to single cellulose chains. The crystal structures of CBM44 and the other CBM (CBM30) in CtCel9D-Cel44A display a beta-sandwich fold. The concave face of both CBMs contains a hydrophobic platform comprising three tryptophan residues that can accommodate up to five glucose residues. The orientation of these aromatic residues is such that the bound ligand would adopt the twisted conformation displayed by cello-oligosaccharides in solution. Mutagenesis studies confirmed that the hydrophobic platform located on the concave face of both CBMs mediates ligand recognition. In contrast to other CBMs that bind to single polysaccharide chains, the polar residues in the binding cleft of CBM44 play only a minor role in ligand recognition. The mechanism by which these proteins are able to recognize linear and decorated beta-1,4-glucans is discussed based on the structures of CBM44 and the other CBMs that bind single cellulose chains.  相似文献   

3.
To address biosecurity issues, government agencies, academic institutions, and professional societies have developed policies concerning the publication of "dual-use" biomedical research-that is, research that could be readily applied to cause significant harm to the public, the environment, or national security. We conducted an e-mail survey of life science journals to determine the percentage that have a dual-use policy. Of the 155 journals that responded to our survey (response rate 39%), only 7.7% stated that they had a written dual-use policy and only 5.8% said they had experience reviewing dual-use research in the past 5 years. Among the potential predictors we investigated, the one most highly associated with a journal having a written dual-use policy was membership in the Nature Publishing Group (positive association). When considered individually, both previous experience with reviewing dual-use research and the journal's impact factor appeared to be positively associated with having a written dual-use policy, but only the former remained significant after adjusting for publishing group. Although preventing the misuse of scientific research for terrorist or criminal purposes is an important concern, few biomedical journals have dual-use review policies. Journals that are likely to review research that raises potential dual-use concerns should consider developing dual-use policies.  相似文献   

4.
The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.  相似文献   

5.
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.  相似文献   

6.
Starch-hydrolyzing enzymes lacking alpha-glucan-specific carbohydrate-binding modules (CBMs) typically have lowered activity on granular starch relative to their counterparts with CBMs. Thus, consideration of starch recognition by CBMs is a key factor in understanding granular starch hydrolysis. To this end, we have dissected the modular structure of the maltohexaose-forming amylase from Bacillus halodurans (C-125). This five-module protein comprises an N-terminal family 13 catalytic module followed in order by two modules of unknown function, a family 26 CBM (BhCBM26), and a family 25 CBM (BhCBM25). Here we present a comprehensive structure-function analysis of starch and alpha-glucooligosaccharide recognition by BhCBM25 and BhCBM26 using UV methods, isothermal titration calorimetry, and x-ray crystallography. The results reveal that the two CBMs bind alpha-glucooligosaccharides, particularly those containing alpha-1,6 linkages, with different affinities but have similar abilities to bind granular starch. Notably, these CBMs appear to recognize the same binding sites in granular starch. The enhanced affinity of the tandem CBMs for granular starch is suggested to be the main biological advantage for this enzyme to contain two CBMs. Structural studies of the native and ligand-bound forms of BhCBM25 and BhCBM26 show a structurally conserved mode of ligand recognition but through non-sequence-conserved residues. Comparison of these CBM structures with other starch-specific CBM structures reveals a generally conserved mode of starch recognition.  相似文献   

7.
Insoluble polysaccharides can be degraded by a set of hydrolytic enzymes formed by catalytic modules appended to one or more non-catalytic carbohydrate-binding modules (CBM). The most recognized function of these auxiliary domains is to bind polysaccharides, bringing the biocatalyst into close and prolonged vicinity with its substrate, allowing carbohydrate hydrolysis. Examples of insoluble polysaccharides recognized by these enzymes include cellulose, chitin, β-glucans, starch, glycogen, inulin, pullulan, and xylan. Based on their amino acid similarity, CBMs are grouped into 55 families that show notable variation in substrate specificity; as a result, their biological functions are miscellaneous. Carbohydrate or polysaccharide recognition by CBMs is an important event for processes related to metabolism, pathogen defense, polysaccharide biosynthesis, virulence, plant development, etc. Understanding of the CBMs properties and mechanisms in ligand binding is of vital significance for the development of new carbohydrate-recognition technologies and provide the basis for fine manipulation of the carbohydrate–CBM interactions.  相似文献   

8.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

9.
Dual-use research of concern (DURC) is scientific research with significant potential for generating information that could be used to harm national security, the public health, or the environment. Editors responsible for journal policies and publication decisions play a vital role in ensuring that effective safeguards exist to cope with the risks of publishing scientific research with dual-use implications. We conducted an online survey of 127 chief editors of life science journals in 27 countries to examine their attitudes toward and experience with the review and publication of dual-use research of concern. Very few editors (11) had experience with biosecurity review, and no editor in our study reported having ever refused a submission on biosecurity grounds. Most respondents (74.8%) agreed that editors have a responsibility to consider biosecurity risks during the review process, but little consensus existed among editors on how to handle specific issues in the review and publication of research with potential dual-use implications. More work is needed to establish consensus on standards for the review and publication of dual-use research of concern in life science journals.  相似文献   

10.
Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display beta-1,3-glucanase activity. BhCBM6 binds beta-1,3-glucooligosaccharides with affinities of approximately 1 x 10(5) m(-1). The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended beta-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.  相似文献   

11.
Cellulose-binding modules (CBMs) of two extracellular matrix proteins, St15 and ShD, from the slime mold Dictyostelium discoideum were expressed in Escherichia coli. The expressed proteins were purified to > 98% purity by extracting inclusion bodies at pH 11.5 and refolding proteins at pH 7.5. The two refolded CBMs bound tightly to amorphous phosphoric acid swollen cellulose (PASC), but had a low affinity toward xylan. Neither protein exhibited cellulase activity. St15, the stalk-specific protein, had fourfold higher binding affinity toward microcrystalline cellulose (Avicel) than the sheath-specific ShD CBM. St15 is unusual in that it consists of a solitary CBM homologous to family IIa CBMs. Sequence analysis of ShD reveals three putative domains containing: (a) a C-terminal CBM homologous to family IIb CBMs; (b) a Pro/Thr-rich linker domain; and (c) a N-terminal Cys-rich domain. The biological functions and potential role of St15 and ShD in building extracellular matrices during D. discoideum development are discussed.  相似文献   

12.
Noncatalytic carbohydrate binding modules (CBMs) have been demonstrated to play various roles with cognate catalytic domains. However, for polysaccharide lyases (PLs), the roles of CBMs remain mostly unknown. AlyB is a multidomain alginate lyase that contains CBM32 and a PL7 catalytic domain. The AlyB structure determined herein reveals a noncanonical alpha helix linker between CBM32 and the catalytic domain. More interestingly, CBM32 and the linker does not significantly enhance the catalytic activity but rather specifies that trisaccharides are predominant in the degradation products. Detailed mutagenesis, biochemical and cocrystallization analyses show “weak but important” CBM32 interactions with alginate oligosaccharides. In combination with molecular modeling, we propose that the CBM32 domain serves as a “pivot point” during the trisaccharide release process. Collectively, this work demonstrates a novel role of CBMs in the activity of the appended PL domain and provides a new avenue for the well-defined generation of alginate oligosaccharides by taking advantage of associated CBMs.  相似文献   

13.
Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases, CfLPMO10 and TbLPMO10 from Cellulomonas fimi and Thermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducing CtCBM3a, from the Clostridium thermocellum cellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact of CtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM from CfLPMO10 or the introduction of a family 10 CBM from Cellvibrio japonicus LPMO10B into TbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations.  相似文献   

14.
Among the extensive repertoire of carbohydrate-active enzymes, lytic polysaccharide monooxygenases (LPMOs) have a key role in recalcitrant biomass degradation. LPMOs are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides such as cellulose and chitin. Several LPMOs contain carbohydrate-binding modules (CBMs) that are known to promote LPMO efficiency. However, structural and functional properties of some CBMs remain unknown, and it is not clear why some LPMOs, like CjLPMO10A from the soil bacterium Cellvibrio japonicus, have multiple CBMs (CjCBM5 and CjCBM73). Here, we studied substrate binding by these two CBMs to shine light on their functional variation and determined the solution structures of both by NMR, which constitutes the first structure of a member of the CBM73 family. Chitin-binding experiments and molecular dynamics simulations showed that, while both CBMs bind crystalline chitin with Kd values in the micromolar range, CjCBM73 has higher affinity for chitin than CjCBM5. Furthermore, NMR titration experiments showed that CjCBM5 binds soluble chitohexaose, whereas no binding of CjCBM73 to this chitooligosaccharide was detected. These functional differences correlate with distinctly different arrangements of three conserved aromatic amino acids involved in substrate binding. In CjCBM5, these residues show a linear arrangement that seems compatible with the experimentally observed affinity for single chitin chains. On the other hand, the arrangement of these residues in CjCBM73 suggests a wider binding surface that may interact with several chitin chains. Taken together, these results provide insight into natural variation among related chitin-binding CBMs and the possible functional implications of such variation.  相似文献   

15.
Biotechnological research poses a special security problem because of the duality between beneficial use and misuse. In order to find a balance between regulating potentially dangerous research and assuring scientific advancement, a number of assessments have tried to define which types of research are especially open to misuse and should therefore be considered dual-use research of special concern requiring rigorous oversight. So far, there has been no common understanding of what such activities are. Here we present a review of 27 assessments focusing on biological dual-use issues published between 1997 and 2008. Dual-use research activities identified by these assessments as being of special concern were compiled and compared. Moreover, from these 27 assessments, the primary research publications explicitly identified as examples of concerning research activities were extracted and analyzed. We extracted a core list of 11 activities of special concern and show that this list does not match with the reasons why primary research publications were identified as being of special concern. Additionally, we note that the 11 activities identified are not easily conducted or replicated, and therefore the likelihood of their being used in a high-tech mass casualty bioterrorism event should be reevaluated.  相似文献   

16.
Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3-6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function.  相似文献   

17.
The recycling of photosynthetically fixed carbon by the action of microbial glycoside hydrolases is a key biological process. The consortium of degradative enzymes involved in this process frequently display catalytic modules appended to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs play a central role in the optimization of the catalytic activity of plant cell wall hydrolases through their binding to specific plant structural polysaccharides. Despite their pivotal role in the biodegradation of plant biomass, the mechanism by which these proteins recognize their target ligands is unclear. This report describes the structure of a xylan-binding CBM (CBM15) in complex with its ligand. This module, derived from Pseudomonas cellulosa xylanase Xyn10C, binds to both soluble xylan and xylooligosaccharides. The three-dimensional crystal structure of CBM15 bound to xylopentaose has been solved by x-ray crystallography to a resolution of 1.6 A. The protein displays a similar beta-jelly roll fold to that observed in many other families of binding-modules. A groove, 20-25 A in length, on the concave surface of one of the beta-sheets presents two tryptophan residues, the faces of which are orientated at approximately 240 degrees to one another. These form-stacking interactions with the n and n+2 sugars of xylopentaose complementing the approximate 3-fold helical structure of this ligand in the binding cleft of CBM15. In four of the five observed binding subsites, the 2' and 3' hydroxyls of the bound ligand are solvent-exposed, providing an explanation for the capacity of this xylan-binding CBM to accommodate the highly decorated xylans found in the plant cell wall.  相似文献   

18.
Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.  相似文献   

19.
The term "dual-use" traditionally has been used to describe technologies that could have both civilian and military usage, but this term has at least three different dimensions that pose a dilemma for modern biology and its possible misuse for hostile purposes: (1) ostensibly civilian facilities that are in fact intended for military or terrorist bioweapons development and production; (2) equipment and agents that could be misappropriated and misused for biological weapons development and production; and (3) the generation and dissemination of scientific knowledge that could be misapplied for biological weapons development and production. These three different aspects of the "dual-use dilemma" are frequently confused--each demands a distinct approach within a "web of prevention" in order to reduce the future risk of bioterrorism and biowarfare. This article discusses the nature of the different perspectives and divergent approaches as a contribution to finding a scientifically acceptable global solution to the problem posed by the dual-use dilemma. We propose that: (1) facilities that are intended for bioweapons development and production should be primarily prevented by a strengthened Biological and Toxin Weapons Convention (BTWC) effectively implemented in all nation states, one that includes provisions for adequate transparency to improve confidence and a mechanism for thorough inspections when there is sufficient cause, and enhanced law enforcement activities involving international cooperation and sharing of critical intelligence information; (2) potentially dual-use equipment and agents should be available to legitimate users for peaceful purposes, but strengthened national biosafety and physical and personnel biosecurity controls in all nations together with effective export controls should be implemented to limit the potential for the misappropriation of such equipment and materials; and (3) information should be openly accessible by the global scientific community, but a culture of responsible conduct involving the breadth of the international life sciences communities should be adopted to protect the ongoing revolution in the life sciences from being hijacked for hostile misuse of the knowledge generated and communicated by life scientists.  相似文献   

20.
Carbohydrate recognition is central to the biological and industrial exploitation of plant structural polysaccharides. These insoluble polymers are recalcitrant to microbial degradation, and enzymes that catalyze this process generally contain non-catalytic carbohydrate binding modules (CBMs) that potentiate activity by increasing substrate binding. Agarose, a repeat of the disaccharide 3,6-anhydro-alpha-L-galactose-(1,3)-beta-D-galactopyranose-(1,4), is the dominant matrix polysaccharide in marine algae, yet the role of CBMs in the hydrolysis of this important polymer has not previously been explored. Here we show that family 6 CBMs, present in two different beta-agarases, bind specifically to the non-reducing end of agarose chains, recognizing only the first repeat of the disaccharide. The crystal structure of one of these modules Aga16B-CBM6-2, in complex with neoagarohexaose, reveals the mechanism by which the protein displays exquisite specificity, targeting the equatorial O4 and the axial O3 of the anhydro-L-galactose. Targeting of the CBM6 to the non-reducing end of agarose chains may direct the appended catalytic modules to areas of the plant cell wall attacked by beta-agarases where the matrix polysaccharide is likely to be more amenable to further enzymic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号