首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Despite the application of amyloid imaging agents such as PIB, SB13, and FDDNP in Alzheimer's disease (AD) patients, the successful use of these agents in transgenic mice models of AD has not been reported to date. As a first step in understanding the behaviour of these ligands in transgenic models of AD, we have investigated in a series of in vitro ligand binding assays the interaction of selected agents, including PIB, FDDNP, SB13, and BSB, with amyloid fibrils produced from rodent Abeta(1-40) (roAbeta) peptide. The data indicate that the ligand binding affinities together with the pattern and number of binding sites on the roAbeta fibrils are broadly conserved with that reported previously for human Abeta(1-40) (huAbeta) fibrils. However, characterisation of huAbeta fibrils formed in the presence of increasing amounts of roAbeta (1, 5, 10% w/w) demonstrated a dose-dependent reduction in the number of high affinity [(3)H]Me-BTA-1 binding sites such that at the highest amount of roAbeta the specific signal was reduced by approximately 95%. These studies suggest that (i) the presence of small amounts of roAbeta in huAbeta fibrils has the potential to cause subtle ultrastructural alterations in the polymers and (ii) the weak binding signal observed in vivo in the transgenic mouse models of AD may in part be due to the decreased number of high affinity binding sites on the Abeta fibrils.  相似文献   

12.
In order to validate the use of Crescentia alata (Bignoniaceae) in the traditional medicine of Guatemala as an antiinflammatory remedy, the methanolic (MeOH) extract has been evaluated in vivo for antiinflammatory activity on carrageenin paw edema in rats and in vitro on Escherichia coli lipopolysaccharide- (LPS)-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in J774.A1 macrophage cell line. This extract exerted in vivo a significant anti-inflammatory activity at the highest dose tested. The same extract showed in vitro an inhibitory activity on inducible nitric oxide synthase expression and on NO formation in LPS-primed J774.A1 cells. Subsequent fractionation and analysis of the extract has led to the isolation and characterization as major constituents of two flavonol glycosides: quercetin 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside (rutin) 1, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside (kaempferol 3-O-rutinoside) 2, and flavonol aglycone, kaempferol 3. Their structures were elucidated by spectral methods. The bioassay-directed analysis of flavonols 1-3 indicated that kaempferol (3) was the most active compound contained in the MeOH extract because it reduced in vitro both NO production and iNOS expression in LPS-primed J774.A1 cells, whereas rutin (1) and kaempferol 3-O-rutinoside (2) showed no significant activity. The MeOH extract and all of flavonoids tested did not show in vitro significant cytotoxic effect in J774.A1 macrophage cell line.  相似文献   

13.
BackgroundMany polyphenols have been proposed as broad-spectrum inhibitors of amyloid formation. To investigate structure–activity relationships relevant for the interaction of flavonoids with transthyretin (TTR), the protein associated with familial amyloid polyneuropathy (FAP), we compared the effects of major tea catechins and their larger polymers theaflavins, side-by-side, on TTR amyloid formation process.MethodsInteraction of flavonoids with TTR and effect on TTR stability were assessed through binding assays and isoelectric focusing in polyacrylamide gel. TTR aggregation was studied, in vitro, by dynamic light scattering (DLS), transmission electron microscopy (TEM) and in cell culture, through cytotoxicity assays.ResultsTested flavonoids bound to TTR and stabilized the TTR tetramer, with different potencies. The flavonoids also inhibited in vitro formation of TTR small oligomeric species and in cell culture inhibited pathways involving caspase-3 activation and ER stress that are induced by TTR oligomers. In all assays performed the galloyl esters presented higher potency to inhibit aggregation than the non-gallated flavonoids tested.ConclusionsOur results highlight the presence of gallate ester moiety as key structural feature of flavonoids in chemical chaperoning of TTR aggregation. Upon binding to the native tetramer, gallated flavonoids redirect the TTR amyloidogenic pathway into unstructured nontoxic aggregation assemblies more efficiently than their non-gallated forms.General significanceOur findings suggest that galloyl moieties greatly enhance flavonoid anti-amyloid chaperone activity and this should be taken into consideration in therapeutic candidate drug discovery.  相似文献   

14.
15.
16.
17.
An artificial recombination site hixC composed of two identical half-sites that bind the Hin recombinase served as a better operator in vivo than the wild type site hixL (Hughes, K. T., Youderian, P., and Simon, M. I (1988) Genes & Dev. 2, 937-948). In vitro binding assays such as gel retardation assay and methylation protection assay demonstrated that Hin binds to hixC as tightly as it binds to hixL, even when the sites are located in negatively supercoiled plasmids. However, hixC served as a poor recombination site when it was subjected to the standard inversion assay in vitro. hixC showed a 16-fold slower inversion rate than the wild type. A series of biochemical assays designed to probe different stages of the Hin-mediated inversion reaction, demonstrated that Hin dimers bound to hixC have difficulty in forming paired hix site intermediates. KMnO4 and S1 nuclease assays detected an anomalous structure of the center of hixC only when the site was in negatively supercoiled plasmids. Mutational analysis in the central region of hixC and assays of paired hix site formation with topoisomers of the hixC substrate plasmid suggested that Hin is not able to pair hixC sites because of the presence of the anomalous structure in the center of the site. The structure does not behave like a DNA "cruciform" since Hin dimers still bind efficiently to the site. It is thought to consist of a short denatured "bubble" encompassing 2 base pairs. During the study of mutations in the center of hixC, it was found that Hin is not able to cleave DNA if a guanine residue is one of the two central nucleotides close to the cleavage site. Furthermore, Hin acts in a concerted fashion and cannot cleave any DNA strand if one of the four strands in the inversion intermediate is not cleavable.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号