首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental model of a cutaneous wound in mice has been offered, aimed to study the proteolytic activity of the wound fluid produced at early stages of wound healing, and to examine the continuous inflammatory state. The presence of metalloproteinases MMP-2 and MMP-9 in the wound fluid matrix was found to correlate with the existence of neutrophils and macrophages in the tissue.  相似文献   

2.

Background

Matricellular proteins, including periostin, are important for tissue regeneration.

Methods and Findings

Presently we investigated the function of periostin in cutaneous wound healing by using periostin-deficient (−/−) mice. Periostin mRNA was expressed in both the epidermis and hair follicles, and periostin protein was located at the basement membrane in the hair follicles together with fibronectin and laminin γ2. Periostin was associated with laminin γ2, and this association enhanced the proteolytic cleavage of the laminin γ2 long form to produce its short form. To address the role of periostin in wound healing, we employed a wound healing model using WT and periostin−/− mice and the scratch wound assay in vitro. We found that the wound closure was delayed in the periostin−/− mice coupled with a delay in re-epithelialization and with reduced proliferation of keratinocytes. Furthermore, keratinocyte proliferation was enhanced in periostin-overexpressing HaCaT cells along with up-regulation of phosphorylated NF-κB.

Conclusion

These results indicate that periostin was essential for keratinocyte proliferation for re-epithelialization during cutaneous wound healing.  相似文献   

3.
A simultaneous study of wound proteolytic activity and morphological picture of the first stages of wound healing on rat deep wound model has been shown. The process of wound healing can be evaluated by dynamics of matrix metalloproteinase activities in wound fluid. Changes in activities of different matrix metalloproteinases correlate with different stages of healing. Implantation of polychlorvinyl camera in the wound makes it possible to obtain the volume of wound fluid sufficient for a complex evaluation of healing at the initial stages of wound process.  相似文献   

4.
5.
1. The effectiveness of wound licking with parotid, submandibular or sublingual saliva on wound healing was evaluated in selectively sialadenectomized rats. 2. The rate of healing of experimentally induced cutaneous wounds was evaluated macroscopically by photography at 0, 2, 4 and 6 days after surgery. 3. Sialadenectomy of all major glands significantly slowed down wound healing compared to sham-operated controls. 4. Parotid licking had no effect compared to controls; submandibular licking and sublingual licking appeared to be very effective. 5. The results suggest that saliva promotes wound healing in experimentally induced cutaneous wounds by communal licking; this is a result of the submandibular and sublingual saliva and not the parotid saliva.  相似文献   

6.
Diabetic patients are at high risk of developing delayed cutaneous wound healing. Adiponectin plays a pivotal role in the pathogenesis of diabetes and is considered to be involved in various pathological conditions associated with diabetes; however, its role in wound repair is unknown. In this study, we elucidated the involvement of adiponectin in cutaneous wound healing in vitro and in vivo. Normal human keratinocytes expressed adiponectin receptors, and adiponectin enhanced proliferation and migration of keratinocytes in vitro. This proliferative and migratory effect of adiponectin was mediated via AdipoR1/AdipoR2 and the ERK signaling pathway. Consistent with in vitro results, wound closure was significantly delayed in adiponectin-deficient mice compared with wild-type mice, and more importantly, keratinocyte proliferation and migration during wound repair were also impaired in adiponectin-deficient mice. Furthermore, both systemic and topical administration of adiponectin ameliorated impaired wound healing in adiponectin-deficient and diabetic db/db mice, respectively. Collectively, these results indicate that adiponectin is a potent mediator in the regulation of cutaneous wound healing. We propose that upregulation of systemic and/or local adiponectin levels is a potential and very promising therapeutic approach for dealing with diabetic wounds.  相似文献   

7.
The wound healing process is a highly orchestrated process, which includes inflammation, re-epithelialization, granulation tissue formation, matrix formation and re-modeling. In this paper, we attempt to determine if bio-active ceramic resource powder particles had an effect on cutaneous wound healing. Furthermore, we investigated its related mechanism and the expression of Smads of cutaneous wound healing, which can be accelerated by bio-active ceramic ointment. Topically applied lesions of 5%, 10% and 15% bio-active ceramic ointment (AO) showed accelerated wound closure, re-epithelialization, and the related immediate down stream of TGF-β (p-Smad2/3 and Smad3) was suppressed. In particular, 10% and 15% AO lesions became closed faster at Days 3 and 4 of post-wound and p-Smad2/3 was also suppressed. All AO lesions showed accelerated mild wound closure at Day 6, but there were no significant difference. Several papers reported that Smad3 may mediate the signaling pathways that is inhibitory to wound healing, as the deletion of Smad3 leads to enhanced re-epithelialization and contraction of the wound area. This study showed that topical, bio-active ceramic ointment applications accelerated wound closure, re-epithelialization and the suppression of Smad proteins (p-Smad2/3, Smad3). The data revealed that the suppression of Smad3, which was induced by bio-active ceramic resources powder particles affected re-epithelialization and cutaneous wound closure. At the end of this paper, we concluded that bio-active ceramic resources affect cutaneous wound healing by accelerating the re-epithelialization of keratinocytes and that is mediated by the suppression of related protein, Smad3.  相似文献   

8.
The role of sensory nociceptor nerves in cutaneous wound healing was investigated following full-thickness 4-mm diameter dorsal cutaneous excision wounding of rats on postnatal day 12. In rats with intact innervation, wounds at 3 days contained large numbers of TUNEL- and BRDU-labeled nuclei, consistent with inflammatory cell death and granulation cell proliferation. Wound area and volume decreased through 11 days in concert with a transient appearance of alpha-smooth muscle actin-immunoreactive myofibroblasts, declining rates of cell division, and increased occurrence of apoptotic cells. Sensory denervation by capsaicin injections on postnatal days 2 and 9 reduced calcitonin gene-related peptide-immunoreactive wound innervation persistently by up to 43%. This was associated with increased wound surface area and volume, and delays in scab loss and re-epithelialization. Relative to control wounds, granulation tissue showed increased myofibroblast content at 5-7 days. Capsaicin-treated rats had more BRDU-labeled cells, including myofibroblasts, through day 7. Numbers of TUNEL apoptotic cells per unit area of tissue section were reduced by denervation in both early and late stages of healing. We conclude that partial loss of sensory innervation impairs cutaneous wound healing in developing rats, as manifested by delayed re-epithelialization and failure of the wound area to decrease normally through at least 21 days. This is associated with an abnormally enlarged wound tissue volume resulting from increased granulation cell proliferation without proportionate increases in apoptosis. These findings suggest that nociceptor innervation plays a critical role in wound healing by regulating wound cellularity.  相似文献   

9.
Elucidating the roles and composition of the human skin microbiome has revealed a delicate interplay between resident microbes and wound healing. Evolutionarily speaking, normal cutaneous flora likely has been selected for because it potentiates or, at minimum, does not impede wound healing. While pigs are the gold standard model for wound healing studies, the porcine skin microbiome has not been studied in detail. Herein, we performed 16S rDNA sequencing to characterize the pig skin bacteriome at several anatomical locations. Additionally, we used bacterial conditioned-media with in vitro techniques to examine the paracrine effects of bacterial-derived proteins on human keratinocytes (NHEK) and fibroblasts (NHDF). We found that at the phyla level, the pig skin bacteriome is similar to that of humans and largely consists of Firmicutes (55.6%), Bacteroidetes (20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) however species-level differences between anatomical locations exist. Studies of bacterial supernatant revealed location-dependent effects on NHDF migration and NHEK apoptosis and growth factor release. These results expand the limited knowledge of the cutaneous bacteriome of healthy swine, and suggest that naturally occurring bacterial flora affects wound healing differentially depending on anatomical location. Ultimately, the pig might be considered the best surrogate for not only wound healing studies but also the cutaneous microbiome. This would not only facilitate investigations into the microbiome’s role in recovery from injury, but also provide microbial targets for enhancing or accelerating wound healing.  相似文献   

10.
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.  相似文献   

11.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

12.
Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor with anti-microbial properties found in mucosal fluids. It is expressed during cutaneous wound healing. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in this process. We have generated mice null for the gene encoding SLPI (Slpi), which show impaired cutaneous wound healing with increased inflammation and elastase activity. The altered inflammatory profile involves enhanced activation of local TGF-beta in Slpi-null mice. We propose that SLPI is a pivotal endogenous factor necessary for optimal wound healing.  相似文献   

13.
微小RNA是一类真核细胞中广泛存在的内源性转录后调控分子,其在细胞的增殖、分化、凋亡、迁移等过程中发挥了重要的调控作用。皮肤创伤修复涉及复杂的细胞与分子的相互作用网络。近年来研究表明micro RNAs在皮肤创伤修复中发挥调控作用,引人关注。miR-21作为重要的癌基因是目前研究的最多的miRNAs分子之一,其在皮肤创伤修复中的作用研究也越来越受到重视。研究表明miR-21参与了细胞增殖与迁移、炎症反应、血管生成和细胞外基质合成等重要修复相关事件的调控。因此,阐明miR-21分子在正常皮肤创伤愈合中的作用,厘清miR-21表达失调在修复不足和修复过度中的功能,将深化我们对于皮肤创伤愈合基本理论的认识,并为促进创面愈合与防治修复不足和过度提供潜在的治疗靶点。本文就miR-21分子在正常皮肤创伤修复、慢性难愈性创面和增生性瘢痕中作用的研究进展进行综述展望。  相似文献   

14.
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.  相似文献   

15.
Distribution of the extracellular matrix glycoprotein tenascin during wound healing in mouse skin was studied immunohistochemically. Within 24 hours after wounding, and preceding the formation of granulation tissue, tenascin appeared in the basement membranes beneath epidermis and hair follicles adjacent to the wound edges and in the wounded edges of cutaneous muscle layer. Granulation tissue began to form in the wound space at about 1-2 days and was immediately covered by epidermis. Tenascin first appeared in the periphery of the granulation tissue beneath healing epidermis and around the wounded edges of cutaneous muscle layer. Then the tenascin-positive area extended into the inner region of granulation tissue. At about 5-7 days, all of the granulation tissue was intensely stained with anti-tenascin serum. Tenascin immunoreactivity decreased as granulation tissue was replaced with reconstructed dermal tissue at 7-14 days. In most cases, tenascin staining persisted longest in the dermis beneath the healing epidermis and at the juncture of healing edges of cutaneous muscle layer. It disappeared at about 10-14 days after wounding. These findings suggest that tenascin may play an important role in the seaming of wounded tissues.  相似文献   

16.
17.
18.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

19.

Background  

SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them.  相似文献   

20.
Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP‐labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full‐thickness cutaneous wound site in streptozotocin‐induced diabetic mice. Wounds treated with MSC‐ADM demonstrated an increased percentage of wound closure. The treatment of MSC‐ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col‐I) fibers synthesis via second harmonic generation imaging. The synthesis of Col‐I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP‐labeled MSCs during wound healing was simultaneously traced via two‐photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo‐multiplier tube.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号