首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine if selected biochemical parameters representing the contractile and calcium regulating systems of cardiac muscle scaled among mammals having inherently different resting heart rates (RHR). Eight mammalian species with RHR ranging from 51 to 475 beats per minute (bpm) were studied.The oxidative capacity of the myocardium is highly correlated with the RHR. The hypothesis of the present study was that the capacities of the energy utilizing processes of contraction and calcium regulation would also be correlated to the functional demand imposed on the muscle as represented by the RHR.Myosin (M) and myofibrillar (MF) ATPase activities, myosin isoenzyme distribution and sarcoplasmic reticulum (SR) ATPase activity were determined. Animals with RHR above 300 bpm express V1 myosin while animals with lower RHR express primarily V3. M and MF ATPase activities correlated with RHR, but the major difference in activities occurred at the threshold RHR of about 300 bpm at which the switch from V3 to V1 appears to occur. SR ATPase activity per mg of microsomal protein was for the most part constant among different mammals, but the SR ATPase activity per g of heart tissue was significantly correlated with RHR as slower beating hearts tended to yield less SR protein per unit mass.We conclude that both the contractile and calcium regulating systems are scaled to the functional parameter of RHR among different mammals. The contractile system uses a slow myosin ATPase isoform at low resting heart rates whereas above the postulated threshold RHR of about 300 bpm a switch in gene expression to a fast myosin ATPase isoform occurs. For the calcium regulating system, the heart does not seem to have the choice of altering the quality of the SR ATPase isoform and thus calcium regulating capacity is set by alterations in the quantity of SR per unit of heart mass.  相似文献   

2.
3.
The rates of ATP synthesis and of ATP-driven NAD reduction have been measured in bovine heart submitochondrial particles as a function of the fraction of inhibited redox pumps (in titrations with either antimycin or rotenone) and of the fraction of inhibited ATPases (in titrations with DCCD). The flux control coefficients of the redox and ATPase proton pumps on the rates of ATP synthesis and of ATP-driven NAD reduction have been derived and found to be equal to 1 for both pumps; i.e., both pumps appear to be 'completely rate limiting'. A theoretical analysis of the inhibitor titration approach based on kinetic models of chemiosmotic coupling and on the theory of metabolic control is presented. This analysis (i) shows that the results of the single inhibitor titrations are incompatible with a delocalized chemiosmotic mechanism of energy coupling if the proton conductance of the membrane is sufficiently low with respect to the conductances of the pumps; and (ii) suggests an experimental approach based on the determination of the P/O and the respiratory control ratios at different degrees of inhibition of the proton pumps to establish the origin of the 'loose coupling' of submitochondrial particle preparations. Three independent types of observation show that the 'loose coupling' of the particle preparation is not mainly due to an increased membrane proton conductance. The same and other independent observations are consistent with the view that the loose coupling of submitochondrial particle preparation is due mainly to inhomogeneity, i.e. to the presence of a subpopulation of highly leaky non-phosphorylating vesicles respiring at maximal rate. The results as a whole together with the simulations and analysis presented lead to the conclusion that the mechanism of free-energy coupling in submitochondrial particles is not completely delocalized.  相似文献   

4.
Osteoblasts, osteocytes and osteoclasts are specialised cells of bone that play crucial roles in the formation, maintenance and resorption of bone matrix. Bone formation and resorption critically depend on optimal intracellular calcium and phosphate homeostasis and on the expression and activity of plasma membrane transport systems in all three cell types. Osteotropic agents, mechanical stimulation and intracellular pH are important parameters that determine the fate of bone matrix and influence the activity, expression, regulation and cell surface abundance of plasma membrane transport systems. In this paper the role of ATPase pumps is reviewed in the context of their expression in bone cells, their contribution to ion homeostasis and their relation to other transport systems regulating bone turnover.  相似文献   

5.
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+ -Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg.kg(-1).day(-1)) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemodynamically and the heart and lung were examined morphologically. Some hearts were immediately frozen at -70 degrees C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+-Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+-Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.  相似文献   

6.
Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca2 +/H+ antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca2 + ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca2 + ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet.  相似文献   

7.
In animal models of conotruncal heart defects, an abnormal calcium sensitivity of the contractile apparatus and a depressed L-type calcium current have been described. Sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) is a membrane protein that catalyzes the ATP-dependent transport of Ca(2+) from the cytosol to the SR. The activity of SERCA is inhibited by phospholamban (PLN) and sarcolipin (SLN), and all these proteins participate in maintaining the normal intracellular calcium handling. Ryanodine receptors (RyRs) are the major SR calcium-release channels required for excitation-contraction coupling in skeletal and cardiac muscle. Our objective was to evaluate SERCA2a (i.e., the SERCA cardiac isoform), PLN, SLN, and RyR2 (i.e., the RyR isoform enriched in the heart) gene expression in myocardial tissue of patients affected by tetralogy of Fallot (TOF), a conotruncal heart defect. The gene expression of target genes was assessed semiquantitatively by RT-PCR using the calsequestrin (CASQ, a housekeeping gene) RNA as internal standard in the atrial myocardium of 23 pediatric patients undergoing surgical correction of TOF, in 10 age-matched patients with ventricular septal defect (VSD) and in 13 age-matched children with atrial septal defect (ASD). We observed a significantly lower expression of PLN and SLN in TOF patients, while there was no difference between the expression of SERCA2a and RyR2 in TOF and VSD. These data suggest a complex mechanism aimed to enhance the intracellular Ca(2+) reserve in children affected by tetralogy of Fallot.  相似文献   

8.
Skeletal muscle has an inherent biochemical phenotypic plasticity that provides the possibility for it to be remodeled into a "heart-like" muscle for use in cardiac-assist devices. The purpose of this study was to chronically stimulate skeletal muscle electrically to transform the biochemical capacities of the three major subcellular systems (i.e., metabolic, calcium regulating, and contractile) to resemble those of heart muscle. The latissimus dorsi muscle (LDM) of mongrel dogs weighing 22-27 kg was stimulated via the thoracodorsal nerve at 2 Hz for 6-8 wk. This stimulation protocol reduced the phosphorylase (glycogenolytic) and phosphofructokinase (glycolytic) activities by 70%. The aerobic (citrate synthase activity) and fatty acid oxidative (3-hydroxyacyl-CoA dehydrogenase activity) capacities were not significantly increased by chronic stimulation and remained at about one-fourth those in the canine heart. The calcium-dependent sarcoplasmic reticulum adenosinetriphosphatase (ATPase) activity in the microsomal fraction, which was sixfold greater in the nonstimulated LDM than in the heart, was reduced by electrical stimulation to a level similar to that of the dog heart. The contractile capacity was evaluated by determining the percentage of types I and II fibers, the myofibrillar ATPase activity, and the proportion of myosin isoforms. The transformed muscle was comprised of 93 +/- 2% type I fibers, a myofibrillar ATPase activity similar to that in heart with primarily a slow-twitch muscle myosin isoform. In conclusion, electrical stimulation of canine LDM at 2 Hz for 6-8 wk resulted in two of the three biochemical systems, which confer physiological expression and fatigue resistance to muscle being transformed to resemble those of the myocardium.  相似文献   

9.
J G Hilton 《Life sciences》1986,39(20):1863-1870
The effects of heating blood to 57 degrees C on intraerythrocytic calcium, membrane ATPase activity and cell shape have been studied in canine blood. Intraerythrocytic calcium was determined by use of arsenazo III, membrane ATPase activity was determined by inorganic phosphorous formation and erythrocyte shape was determined by scanning electron microscopy. The results of this study showed that this degree of thermal trauma would cause a 27% increase in intraerythrocytic calcium and a 38% decrease in ATPase activity. During these changes in calcium and ATPase activity the erythrocyte changed form from biconcave to spherical. Addition of catalase (3,200 U/ml) to the blood prior to heating prevented the changes observed in intraerythrocytic calcium, membrane ATPase activity and shape. The addition of the free-radical generating combination of hypoxanthine-xanthine oxidase to blood produced a 20% decrease in membrane ATPase activity and a change in erythrocyte shape, but did not alter intraerythrocytic calcium. These results suggest that free-radicals are responsible for the changes in membrane ATPase activity. The observation that shape change occurs when ATPase activity has been decreased, but calcium has not been increased, suggests that membrane ATPase activity levels are more important in producing changes in erythrocyte shape than are intraerythrocytic calcium levels.  相似文献   

10.
P Eraso  A Cid  R Serrano 《FEBS letters》1987,224(1):193-197
The activity of the plasma membrane ATPase in growing yeast is increased by low pH and by glucose, conditions which result in a higher demand for proton pumping. The amount of enzyme is not significatively modified under these conditions. The amount of ATPase is only slightly increased by introducing extra copies of its gene in autonomous plasmids. In addition, the expression of the ATPase gene in a multi-copy plasmid causes a reduction of the copy number of the plasmid and slows growth. Therefore, overexpression of the ATPase is detrimental for the cell, justifying a regulatory mechanism based on increasing the catalytic activity and not the amount of enzyme.  相似文献   

11.
Mammalian heart development, from the time of weaning until adulthood, is characterized by progressive and significant enhancement in functional performance. Aerobic metabolism and contractile protein ATPase activity increase in parallel with augmented cardiac function. The present studies examined the potential contribution of phosphorylcreatine shuttle enzymes to the developmentally linked alterations in heart performance. Mitochondrial ATPase specific activity was not altered between weanling and adult heart; however, creatine kinase activity was enhanced approximately threefold. Myofibrillar ATPase activity doubled over the developmental time course, while creatine kinase activity increased to an even greater extent. Enhanced myofibrillar ATPase activity was not due to alterations in either calcium sensitivity or ATPase activity measured in purified myosin. Both the mitochondrial and myofibrillar creatine kinase enzyme activities are enhanced during normal heart growth; however, relatively greater enhancement of the myofibrillar component occurs. Thus, enzymatic reactions comprising the phosphorylcreatine shuttle system are dramatically increased during normal heart development. This mechanism deserves consideration as a potentially powerful contributor to enhanced cardiac function during the perinatal period.  相似文献   

12.
The plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae is a prototype for the mutagenic analysis of structure-function relationships in P-type cation pumps. Because a functional H+ pump is required for viability, wild-type ATPase must be maintained in the plasma membrane for normal cell growth. Our expression strategy involves a rapid switch in expression from the wild-type ATPase gene to a mutant allele followed by entrapment of the newly synthesized mutant enzyme in an internal, secretory vesicle pool. The isolated vesicles prove to be ideally suited for the study of the catalytic and transport properties of the ATPase. Work to date has focused on conserved residues in the vicinity of the aspartyl-phosphate reaction intermediate. Substitution of Asp378 with Glu, Ser, or Asn and of Lys379 with Gln prevents normal biogenesis of the mutant ATPase. The more conservative Lys379----Arg mutation was tolerated, but with a sixfold loss of activity and substantial alterations in Km for ATP and Ki for vanadate. Nonconservative replacement of Thr380, Thr382, or Thr384 with Ala led to inactive enzyme, whereas the conservative change to Ser caused a two to threefold reduction in ATP hydrolysis and H(+)-pumping. Taken together, the results are consistent with an essential role for these invariant residues in phosphate-binding and ATP hydrolysis.  相似文献   

13.
Doxorubicin (adriamycin) is a highly effective cancer chemotherapeutic drug but its clinical utility is limited by its cardiotoxicity. Doxorubicinol, the major metabolite of doxorubicin, is up to 10 times more potent than doxorubicin at inhibiting isometric contraction of the papillary muscle isolated from the right ventricle of rabbit heart. Doxorubicinol also increases resting tension of isolated cardiac muscle indicative of incomplete relaxation between contractions, a characteristic of doxorubicinol but not of doxorubicin. This study assesses the effect(s) of doxorubicinol on a variety of ion pumps which may explain, in part, the action of the metabolite in the intact muscle. We find the doxorubicinol is a potent inhibitor (IC50 less than 5 micrograms/ml) of calcium-stimulated ATPase activity of sarcoplasmic reticulum from canine heart and rabbit skeletal muscle. At comparable levels, doxorubicinol is also a potent inhibitor of (Na + K)-ATPase of cardiac sarcolemma and the Mg-dependent ATPase activity referable to the F0F1 proton pump of mitochondria. For each of these ion pumps, doxorubicinol is at least 80 times more potent an inhibitor than doxorubicin. Doxorubicinol, between 10 and 50 micrograms/ml, increases resting tension up to 4-fold in isolated papillary muscles cyclically contracting at 30 times/min. Resting stress is relatively insensitive to doxorubicin. Thus, doxorubicinol is a potent inhibitor of several key cationic pumps that directly or indirectly regulate cell calcium and inhibits relaxation in the isolated fiber preparation. These observations add a new dimension to understanding the cardiotoxicity of doxorubicin.  相似文献   

14.
15.
Glycogen synthase kinase (GSK) 3beta is a negative regulator of stress-induced cardiomyocyte hypertrophy. It is not clear, however, if GSK-3beta plays any role in regulating normal cardiac growth and cardiac function. Herein we report that a transgenic mouse expressing wild type GSK-3beta in the heart has a dramatic impairment of normal post-natal cardiomyocyte growth as well as markedly abnormal cardiac contractile function. The most striking phenotype, however, is grossly impaired diastolic relaxation, which leads to increased filling pressures of the left ventricle and massive atrial enlargement. This is due to profoundly abnormal calcium handling, leading to an inability to normalize cytosolic [Ca2+] in diastole. The alterations in calcium handling are due at least in part to direct down-regulation of the sarcoplasmic reticulum calcium ATPase (SERCA2a) by GSK-3beta, acting at the level of the SERCA2 promoter. These studies identify GSK-3beta as a regulator of normal growth of the heart and are the first of which we are aware, to demonstrate regulation of expression of SERCA2a, a critical determinant of diastolic function, by a cytosolic signaling pathway, the activity of which is dynamically modulated. De-regulation of GSK-3beta leads to severe systolic and diastolic dysfunction and progressive heart failure. Because down-regulation of SERCA2a plays a central role in the diastolic and systolic dysfunction of patients with heart failure, these findings have potential implications for the therapy of this disorder.  相似文献   

16.
17.
Luo Y  Liu Y  Zhang C  Luo H  Guan H  Liao H  Qiu G  Liu X 《Current microbiology》2008,57(4):274-280
Acidithiobacillus ferrooxidans, an important microorganism in bioleaching industry, has been sequenced recently, and from the annotated information, there are four genes involved in copper homeostasis. Sequence analysis showed that two of them, Afe0329 and Afe0663, were high homologous (94.43% identity). With the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) cloning approach, the differential gene expression of these two high homologous genes in a genome was successfully identified for the first time. In comparison with Afe0663, Afe0329 was highly expressed grown in the medium with copper, and the restriction fragment length polymorphism (RFLP) profile showed that 96% of lanes were products of Afe0329. Analysis of the protein sequence encoded by Afe0329 suggested a conserved domain of P1b3-type ATPase, which is a heavy-metal pump, and, to be unexpected, the molecular modeling revealed that the amino acids determining the type of heavy-metal pumps were responsible for the gate of the copper ion channel in the transmembrane area of the protein. The activity of P1b-type ATPase disrupted in Escherichia coli could be partially rescued by complementation by the plasmid-carrying Afe0329 gene. All of these results suggest that a copper homeostasis mechanism including P-type ATPase is of importance for the survival of this extremophilic microorganism.  相似文献   

18.
Dietary manipulations involving high carbohydrate feeding increase VI cardiac myosin isoform expression in hormonally deficient rats. The purpose of this study was to determine if extremes in dietary carbohydrate availability could alter cardiac myosin isoform patterns in normal weanling and adult rats. Three and six weeks of dietary manipulations (either high or low carbohydrate diets) failed to change calcium-activated myofibril ATPase activity, calcium regulated myofibril ATPase activity, or the myosin isoform distribution in the adult. In contrast, a four week, high carbohydrate diet reduced calcium activated myosin ATPase activity by 33%, calcium regulated myofibril ATPase activity by 10%, and Vl isoform expression by 66% in weanling rats. Although the low carbohydrate diet caused no change in the myosin ATPase properties, it decreased VI isoform expression by 17%. These results show that carbohydrate availability can alter cardiac myosin isoform expression in normal rats, but only at weanling age. The reason for this age-related contrast in response to dietary manipulations is unknown at this stage. The dietary manipulations may have acted directly on the heart by creating a state of malnutrition, or indirectly, by altering some developmental process which links maturation of the sympathetic nervous system with myosin isoform expression.  相似文献   

19.
Diabetes-induced abnormalities in the myocardium   总被引:2,自引:0,他引:2  
One of the leading causes of mortality in diabetics is myocardial disease. In the past few years this subject has generated a significant amount of interest with the result that myocardial problems associated with diabetes are far better understood. Though originally thought to occur as a result of atherosclerosis, various studies have shown that heart disease can occur in the absence of atherosclerosis, suggesting a diabetic cardiomyopathy. Using diabetic animals, it has been possible to characterize diabetes-induced myocardial abnormalities. Diabetic rat hearts do not respond to conditions of high stress as well as controls. The functional depression is accompanied by altered cardiac enzyme systems. A decrease in myosin ATPase activity which appears to be a result of diabetes-induced hypothyroidism is seen. Also, a depression of sarcoplasmic reticular calcium ATPase, along with a depression of calcium uptake by the SR, is seen in diabetic rat hearts. Na+, K+ ATPase activity has also been shown to be depressed and the depression appears to correlate with depressed atrial contractility. High levels of circulating fats in diabetics may alter the integrity of membranes leading to altered enzyme activities. Insulin treatment has been relatively successful at reversing or preventing myocardial changes in the diabetic rat. Other treatments that have been studied include thyroid hormone treatment, since the depression of myosin ATPase can be corrected by such treatment; and carnitine treatment, as the elevation of long chain acyl carnitines (LCAC) and the resulting depression of calcium uptake in the SR can be so normalized. These treatments have not been successful at normalizing cardiac function. A combination of the two treatments normalized function only partially, suggesting that factors besides myosin ATPase and SR calcium uptake are involved. Other treatments that have been tried include vanadate, methyl palmoxirate, and choline and methionine. Vanadate treatment has proved to be encouraging in that it normalizes both function and hyperglycemia. Methyl palmoxirate, a fatty acid analog, normalized only the elevation of LCAC but did not affect function. Methionine and choline were only partially successful in preventing the functional alterations of diabetic rat hearts. The purpose of the present article is to review our understanding of diabetes-induced myocardial problems and their possible causes. Findings from our laboratory and others are described in which attempts have been made to normalize cardiac function.  相似文献   

20.
Treatment of sarcoplasmic reticulum vesicles with aqueous n-alcohols caused inhibition of calcium uptake and enhancement of ATPase activity. With increasing alcohol concentration, the ATPase activity reached a maximum (in the case of n-butanol, at about 350 mM) and then decreased. The effect of n-butanol was extensively studied. The purified ATPase enzyme and leaky vesicles treated with Triton X-100 or phospholipase A showed high ATPase activity in the absence of n-butanol. With increasing n-butanol concentration, their atpase activities began to decrease above about 250 mM n-butanol, without any enhancement. In the presence of ATP, the turnover rate of calcium after calcium accumulation had reached a steady level was the same as that at the initial uptake. n-Butanol did not affect these rates. Kinetic analyses of these experiments were carried out. The mechanisms of calcium transport and of increase of ATPase activity in the presence of alcohol were interpreted as follows. After calcium accumulation had reached a steady level, fast influx and efflux continued; the influx was coupled with phosphorylated enzyme (E-P) formation and most of the efflux was coupled with rephosphorylation of ATP from ADP and E-P. The observed ATPase activity is the difference between these two reactions. If alcohol molecules make the vesicles leaky, calcium ions will flow out without ATP synthesis and the apparent ATPase activity will increase. The effect of alcohols on sarcoplasmic reticulum vesicles was separated into two actions. The enhancement of ATPase activity was attributed to a leakage of calcium ions from the vesicles, while the decrease of ATPase activity at higher concentrations of alcohols was attributed to denaturation of the ATPase enzyme itself. The two effects were interpreted in terms of equilibrium binding of alcohol molecules to two different sites of the vesicles; leakage and denaturation sites. Similar analysis was carried out for various n-alcohols from methanol to n-heptanol. The apparent free energies of binding of the methylene groups of n-alcohols were evaluated to be -863 cal/mol for the leakage site, and -732 cal/mol for the denaturation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号