首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Restraint hypothermia has often been described, but its cause has never been clarified. We hypothesized that it might be due to a suppression of shivering thermogenesis. Thus, we restrained conscious rats in an ambient temperature of 2 degrees C while measuring rectal (Tre) and tail skin temperatures, metabolic rate (MR), and shivering activity. When rats were cold exposed but not restrained, Tre fell 1.4 +/- 0.2 degrees C (SE) during the 1st h. When these same rats were restrained, Tre fell at a rate of 6.5 +/- 0.2 degrees C/h. MR averaged 15.7 +/- 1.4 W/kg for the unrestrained rats, but it averaged only 9.0 +/- 1.1 W/kg for the restrained rats. The restrained rats showed no signs of shivering. The animals were then subjected to a restraint adaptation regimen and then reexposed to cold. Restraint now produced a fall in Tre of only 2.6 +/- 0.7 degrees C/h. The animals shivered and generated an MR of 15.8 +/- 0.9 W/kg. Naive rats became hypothermic because restraint suppressed shivering activity. However, adapted rats continued to shiver and remained normothermic. We suggest that a stressful or threatening situation, such as restraint for a naive rat, inhibits shivering and leads to hypothermia in a cold environment. This would not occur in adapted rats because restraint is no longer stressful.  相似文献   

2.
In female rats, rectal temperature (Tre), tail vasomotor response, oxygen uptake (VO2), and carbon dioxide production (VCO2) were measured in proestrus and estrus stages during treadmill running at two different speeds at an ambient temperature (Ta) of 24 degrees C. Experiments were performed at 2.00-6.00 a.m., when the difference in Tre was greatest between the two stages; Tre at rest in the estrus stage was 0.54 degrees C higher than in the proestrus stage. In a mild warm environment, threshold Tre for a rise in tail skin temperature (Ttail) was also higher in the estrus stage than in the proestrus stage. In contrast, no difference was seen in the threshold Tre and steady state Tre at the end of exercise between proestrus and estrus stages. These values were higher at the higher work intensity. VO2 was also similar between the two stages, except in the second 5 min after the beginning of exercise, when VO2 was greater and Tre rose more steeply in the proestrus stage. These data indicate that deep body temperature during exercise is regulated at a certain level depending on the work intensity and is not influenced by the estrus cycle.  相似文献   

3.
1. Thermal responses and skin microcirculation were measured in streptozotocin-induced diabetic (SD) rats during acute and chronic exposure to ambient (Ta) temperatures ranging from about 5 to 35 degrees C. 2. At 28 degrees C, SD rats had higher rate of oxygen consumptions (VO2), tail skin blood flow (SKBF), but lower rectal temperatures (Tre) than saline-injected controls. 3. Chronic exposure of the SD rats to 35 and 5 degrees C caused a sharp rise and decline in Tre, respectively. 4. At 35 degrees C, hyperthermia in the SD rats was associated with greater increase in VO2 than controls, but changes in SKBF were similar in both groups. 5. At 5 degrees C, VO2 changed similarly in both the SD and control rats, but vasoconstriction was greater in the controls. 6. The data suggest that hypothermia in SD rats may be associated with impairment of vasoconstriction and hyperthermia may be related to an increase VO2 not accompanied by greater vasodilation.  相似文献   

4.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

5.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

6.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

7.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

8.
Intraperitoneal injection of putrescine induced dose-related hypothermia in rats. The effect was more pronounced at room temperature (22 degrees C) than in a warm environment (30 degrees C), the maximum hypothermia (-2.64 +/- 0.29 degrees C, 30 min. after treatment) being obtained with the dose of 300 mg/Kg and remaining significant throughout 3 hr of observation. Putrescine also had antipyretic activity, as it significantly reduced pyrogen-induced fever at a dose level (100 mg/Kg i.p.) ineffective in causing hypothermia in normal rats. The hypothermic and antipyretic effects of putrescine were not associated with any obvious sign of toxicity.  相似文献   

9.
Either systemic or central administration of apomorphine produced dose-related decreases in rectal temperature at ambient temperatures (Ta) of 8 and 22 degrees C in rats. At Ta = 8 degrees C, the hypothermia was brought about by a decrease in metabolic rate (M). At Ta = 22 degrees C, the hypothermia was due to an increase in mean skin temperature, an increase in respiratory evaporative heat loss (Eres) and a decrease in M. This increased mean skin temperature was due to increased tail and foot skin temperatures. However, at Ta = 29 degrees C, apomorphine produced increased rectal temperatures due to increased M and decreased Eres. Moreover, the apomorphine-induced hypothermia or hyperthermia was antagonized by either haloperidol or 6-hydroxydopamine, but not by 5,6-dihydroxytryptamine. The data indicate that apomorphine acts on dopamine neurons within brain, with both pre- and post-synaptic sites of action, to influence body temperature.  相似文献   

10.
After acclimating individually housed male rats to temperatures of either 24.5 +/- 0.1 or 29.2 +/- 0.1 degrees C for 14 days, randomly paired animals from each group were acutely exposed (3 h) in series to experimental temperatures between 18.0 and 34.5 degrees C in a controlled environment room. Relative humidity of 50 +/- 0.3% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Metabolic rate (MR) and evaporative water loss (EWL) were-measured using an open-flow system; thermistors were used to measure the rectal (Tre) and tail skin (Tts) temperatures. MR was relatively constant over a temperature range of 22.2 to 27.0 degrees C for rats acclimated to 24.5 degrees C and 20.0 to 29.2 degrees C for rats acclimated to 29.2 degrees C. Above and below these ranges, MR for both groups was significantly (P less than 0.05) elevated. At their respective acclimation temperatures, the absolute Tre and Tts of 29.2 degrees C rats were maintained at an elevated level compared with 24.5 degrees C rats. Although EWL for both groups was relatively constant between 18.0 and 27.0 degrees C, 24.5 degrees C rats displayed higher EWL changes at most environmental temperatures above 27.0 degrees C. At 34.5 degrees C, 29.2 degrees C rats dissipated 26% more metabolic heat by evaporation compared with 24.5 degrees C rats. These data suggest that acclimation temperatures of rats affected the thermoneutral zone and alter the set-point temperature around which thermal responses are regulated.  相似文献   

11.
To address whether a shift in hypothalamic thermal setpoint might be a significant factor in induction of hypoxic hypothermia, behavioral thermoregulation was examined in 7 female Sprague-Dawley rats implanted with radiotelethermometers for deep body temperature (Tb) measurement in a thermocline during normoxia (PO2 = 125 torr) and hypoxia (PO2 = 60 torr). Normoxic rats (TNox) selected a mean ambient temperature of 19.7 +/- 1.4 (SE) degrees C and maintained Tb at 37.0 +/- 0.2 degrees C. Hypoxic rats selected a significantly higher ambient temperature (THox = 28.6 +/- 2.2 degrees C) but maintained Tb significantly lower at 35.5 +/- 0.3 degrees C. Without a thermal gradient (ambient temperature = 25 degrees C), Tb during hypoxia was 35.4 +/- 0.4 degrees C. The maintenance of a lower body temperature during hypoxia through behavioral thermoregulation despite having warmer temperatures available supports the hypothesis that the thermoregulatory setpoint of hypoxic rats is shifted to promote thermoregulation at a lower Tb, effectively reducing oxygen demand when oxygen supply is limited.  相似文献   

12.
Since human thermoregulation at rest is altered by cold exposure, it was hypothesized that physical training under cold conditions would alter thermoregulation. Three groups (n = 8) of male subjects (mean age 24.3 +/- 0.9 years) were evaluated: group T (interval training at 21 degrees C), group CT (interval training at 1 degrees C), and group C (no training, equivalent exposure to 1 degrees C). Each group was submitted, before and after 4 weeks of interval training (5 d/week), to a cold air test at rest (SCAT) (dry bulb temperature (Tdb) = 1 degrees C) for a 2-h period for evaluation of the thermoregulatory responses. During SCAT, after the training/acclimation period, group T exhibited a higher rectal temperature (Tre) (P < 0.05) without significant change in mean skin temperature (Tsk) whereas metabolic heat production (M) was higher at the beginning of the SCAT (P < 0.05). For group CT, no thermoregulatory change was observed. Group C showed a lower Tre (P < 0.05) without significant change in either Tsk or in M, suggesting the development of a hypothermic general cold adaptation. This study showed, first, that the cold thermoregulatory responses induced by an interval training differed following the climatic conditions of the training and, second, that this training performed in the cold prevented the development of a general cold adaptation.  相似文献   

13.
Cold-adapted (CA) rats, unlike non-adapted (NA) ones, give exaggerated metabolic response to acute cold exposure, with paradoxical "overshoot" core temperature (Tc) rise in the cold, and they also give enhanced hyperthermia to central injection of prostaglandin E1 (PGE1). The adaptation-dependent differences might be explained either by the high thermogenic capacity of peripheral tissues in CA rats or by differences in the central processing of regulatory signals. If high tissue metabolism sufficiently explains the extreme responses of CA animals, other hypermetabolic states (with high resting metabolic rate, RMR), e.g. hyperthyroidism, should also be accompanied by enhanced reactions. In the present study thermoregulatory responses to acute cold exposure or to PGE1 were compared in hypermetabolic CA, similarly hypermetabolic thyroxine-treated (T4) and control non-hypermetabolic NA rats (mean RMR = 8.12, 8.47 and 6.03 W kg(-1), respectively). Cold exposure was followed by paradoxical core temperature (Tc) rise of 0.5 to 0.7 degrees C only in CA rats, but by Tc fall (0.8 to 2.1 degrees C) in NA and T4 animals. Identical central stimuli (PGE1) induced larger elevations of Tc and metabolic rate in CA rats than in similarly hypermetabolic T4 or in non-hypermetabolic NA animals (mean Tc rise of 1.9 degrees C in CA vs. 0.9 degrees C in T4 and 1.0 degrees C in NA rats). Vasodilatation thresholds were also similar in NA and T4, but lowered in CA animals. A hypermetabolic status, per se, does not seem to explain the enhanced thermoregulatory responsiveness of CA animals, adaptation-induced central regulatory changes may be more important for the "overshoot" phenomenon.  相似文献   

14.
Mild hypothermia is a major concomitant of surgery under general anesthesia. We examined the hypothesis that baroreceptor loading/unloading modifies thermoregulatory peripheral vasoconstriction and, consequently, body core temperature in subjects undergoing lower abdominal surgery with general anesthesia. Thirty-six patients were divided into four groups: control group (C), applied positive end-expiratory pressure (PEEP; 10 cmH(2)O) group (P), applied leg-up position group (L), and a group of leg-up position patients with PEEP starting 90 min after induction of anesthesia (L + P). The esophageal temperature (T(es)) and the forearm-fingertip temperature gradient, as an index of peripheral vasoconstriction, were monitored for 3 h after induction of anesthesia. Mean arterial pressure and pulse pressure did not change during the study in any group. The change in right atrial transmural pressure from the baseline value was 0.3 +/- 0.1 mmHg in C, -3.0 +/- 0.5 mmHg in P, and 2.3 +/- 0.4 mmHg in L (P < 0.01). The change in T(es) at the end of the study was -1.7 +/- 0.1 (35.1 +/- 0.1) degrees C in C, -1.1 +/- 0.1 (35.7 +/- 0.1) degrees C in P, and -2.7 +/- 0.1 (34.1 +/- 0.1) degrees C in L, showing significant differences (P < 0.01). The T(es) threshold for thermal peripheral vasoconstriction was 35.6 +/- 0.1 degrees C in C, 36.2 +/- 0.2 degrees C in P, and 34.8 +/- 0.2 degrees C in L (P < 0.01). Excessive T(es) decrease in the leg-up-position operation was attenuated by applying PEEP (L + P group; P < 0.05). Our data indicate that baroreceptor loading augments and unloading prevents perioperative hypothermia in anesthetized and paralyzed subjects by reducing and increasing the body temperature threshold for peripheral vasoconstriction, respectively.  相似文献   

15.
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.  相似文献   

16.
Thermoregulation, metabolism, and stages of sleep in cold-exposed men   总被引:2,自引:0,他引:2  
Four naked men, selected for their ability to sleep in the cold, were exposed to an ambient temperature (Ta) of 21 degrees C for five consecutive nights. Electrophysiological stages of sleep, O2 consumption (VO2), and skin (Tsk), rectal (Tre), and tympanic (Tty) temperatures were recorded. Compared with five nights at a thermoneutral Ta of 29 degrees C, cold induced increased wakefulness and decreased stage 2 sleep, without significantly affecting other stages. Tre and Tty declined during each condition. The decrease in Tre was greater at 21 degrees C than at 29 degrees C, whereas Tty did not differ significantly between conditions. Increases in Tty following REM sleep onset at 21 degrees C were negatively correlated with absolute Tty. VO2 and forehead Tsk also increased during REM sleep at both TaS, whereas Tsk of the limb extremities declined at 21 degrees C. Unsuppressed REM sleep in association with peripheral vasoconstriction and increased Tty and VO2 in cold-exposed humans, do not signify an inhibition of thermoregulation during this sleep stage as has been observed in other mammals.  相似文献   

17.
The rate of warming after hypothermia depends on the method of rewarming. This study compared the effectiveness of radio frequency (RF) energy against hot (41 degrees C) water immersion (HW) and an insulated cocoon (IC) for rewarming hypothermic men. Six men fasted overnight and were rewarmed for 1 h after attaining a 0.5 degree C reduction in rectal temperature (Tre). Tre and esophageal (Tes) temperature were recorded every 5 min with nonmetallic thermal probes. The base-line value for Tre and Tes just before rewarming was subtracted from each 5 min Tre and Tes during rewarming to give delta Tre and delta Tes. The 12 delta Tes values were averaged for each individual and were compared using analysis of variance. The average delta Tes for RF (1.15 +/- 0.22 degrees C/h) was faster (P less than 0.001) than either IC (0.37 +/- 0.16 degrees C/h) or HW (0.18 +/- 0.09 degree C/h). The present study shows the superiority of RF energy for rewarming mildly hypothermic men.  相似文献   

18.
Influence of EDTA (C10H14N2Na2O8.2H2O) and EGTA (C14H24N2O10) on physiological functions homoiothermic organisms at deep hypothermia, was studied. White rats during cooling were in special sections without rigid fixing of head and limbs. In reply to intravenous introduction of EDTA and EGTA solutions, similar answers of the organisms were observed: raised breathing frequency and amplitude, intensity of electrical activity of muscles; these signs of activation of physiological functions lasted 8-10 minutes. Besides, of the 20th-30th minute after introduction of the second dose of preparations (at rectal temperature 17.1 +/- 0.5 degrees C), the secondary activation respiratory and thermoregulatory functions were registered. The termination of the cold shivering in experiments with introduction of EDTA and EGTA solutions occurred at lower temperatures in rectum and in a brain (16.7-17.3 degrees and 17.8-18.2 degrees C, resp.) than in control experiments (18.7 +/- 0.6 degrees C and 20.2 +/- 1.5 degrees C). The authors suppose that the activation of the thermoregulatory and respiratory functions is caused by a decrease in concentration of ions Ca2+ in the blood plasma.  相似文献   

19.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

20.
It has been reported that hypothermia induced by arginine vasopressin (AVP) is brought about by a coordinated response of reduced thermogenesis in brown adipose tissue (BAT) and increased heat loss through the tail of rats. However, it is well known that AVP is one of the strongest peripheral vasoconstrictors. Whether the AVP-induced hypothermia is associated with an increase in heat loss through the tail is questionable. Therefore, the present study assessed the relationship between the effects of AVP on tail skin temperature and the induced hypothermic response, and to determine if peripheral AVP administration increases heat loss from the tail. Core, BAT and tail skin temperature were monitored by telemetry in male Sprague–Dawley rats before and after intraperitoneal administration of AVP or vasopressin receptor antagonist. We also analyzed simultaneously of the time-course of AVP-induced hypothermic response and its relationship with changes in BAT temperature, and effect of AVP on grooming behavior. The key observations in this study were: (1) rats dosed with AVP induced a decrease in heat production (i.e., a reduction of BAT thermogenesis) and an increase of saliva spreading for evaporative heat loss (i.e., grooming behavior); (2) AVP caused a marked decrease in tail skin temperature and this effect was prevented by the peripheral administration of the vasopressin V1a receptor antagonist, suggesting that exogenous AVP does not increase heat loss in the tail of rats; (3) the vasopressin V1a receptor antagonist could elevate core temperature without affecting tail skin temperature, suggesting that endogenous AVP is involved in suppression of thermogenesis, but not mediates heat loss in the tail of rats. Overall, the present study does not support the conclusion of previous reports that AVP increased tail heat loss in rats, because AVP-induced hypothermia in the rat is accompanied by a decrease in tail skin temperature. The data indicate that exogenous AVP-induced hypothermia attributed to the suppression of thermoregulatory heat production and the increase of saliva spreading for evaporative heat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号