首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications.  相似文献   

2.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

3.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

4.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

5.
Five strains of Gram-negative denitrifying bacteria that used various ketones as sole carbon and energy sources were isolated from activated sludge from a municipal sewage plant. Three strains are related to the genus Pseudomonas; two non-motile species have not yet been affiliated. All strains grew well with ketones and fatty acids (C2 to C7), but sugars were seldom utilized. The physiology of anaerobic acetone degradation was studied with strain BunN, which was originally enriched with butanone. Bicarbonate was essential for growth with acetone under anaerobic and aerobic conditions, but not if acetate or 3-hydroxybutyrate were used as substrates. An apparent Ks value of 5.6 mM-bicarbonate was determined for growth with acetone in batch culture. The molar growth yield was 24.8-29.8 g dry cell matter (mol acetone consumed)-1, with nitrate as the electron acceptor in batch culture; it varied slightly with the extent of poly-beta-hydroxybutyric acid (PHB) formation. During growth with acetone, 14CO2 was incorporated mainly into the C-1 atom of the monomers of the storage polymer PHB. With 3-hydroxybutyrate as substrate, 14CO2 incorporation into PHB was negligible. The results provide evidence that acetone is channelled into the intermediary metabolism of this strain via carboxylation to acetoacetate.  相似文献   

6.
A denitrifying bacterium was isolated from a river sediment after enrichment on 3-chlorobenzoate under anoxic, denitrifying conditions. The bacterium, designated strain 3CB-1, degraded 3-chlorobenzoate, 3-bromobenzoate, and 3-iodobenzoate with stoichiometric release of halide under conditions supporting anaerobic growth by denitrification. The 3-halobenzoates and 3-hydroxybenzoate were used as growth substrates with nitrate as the terminal electron acceptor. The doubling time when growing on 3-halobenzoates ranged from 18 to 25 h. On agar plates with 1 mM 3-chlorobenzoate as the sole carbon source and 30 mM nitrate as the electron acceptor, strain 3CB-1 formed small colonies (1–2 mm in diameter) in 2 to 3 weeks. Anaerobic degradation of both 3-chlorobenzoate and 3-hydroxybenzoate was dependent on nitrate as an electron acceptor and resulted in nitrate reduction corresponding to the stoichiometric values for complete oxidation of the substrate to CO2. 3-Chlorobenzoate was not degraded in the presence of oxygen. 3-Bromobenzoate and 3-iodobenzoate were also degraded under denitrifying conditions with stoichiometric release of halide, but 3-fluorobenzoate was not utilized by the bacterium. Utilization of 3-chlorobenzoate was inducible, while synthesis of enzymes for 3-hydroxybenzoate degradation was constitutively low, but inducible. Degradation was specific to the position of the halogen substituent, and strain 3CB-1 did not utilize 2- or 4-chlorobenzoate. Received: 6 November 1998 / Accepted: 19 January 1999  相似文献   

7.
Batch experiments were carried out to investigate the stoichiometry and kinetics of microbial degradation of toluene under denitrifying conditions. The inoculum originated from a mixture of sludges from sewage treatment plants with alternating nitrification and denitrification. The culture was able to degrade toluene under anaerobic conditions in the presence of nitrate, nitrite, nitric oxide, or nitrous oxide. No degradation occurred in the absence of Noxides. The culture was also able to use oxygen, but ferric iron could not be used as an electron acceptor. In experiments with14C-labeled toluene, 34%±8% of the carbon was incorporated into the biomass, while 53%±10% was recovered as14CO2, and 6%±2% remained in the medium as nonvolatile water soluble products. The average consumption of nitrate in experiments, where all the reduced nitrate was recovered as nitrite, was 1.3±0.2 mg of nitrate-N per mg of toluene. This nitrate reduction accounted for 70% of the electrons donated during the oxidation of toluene. When nitrate was reduced to nitrogen gas, the consumption was 0.7±0.2 mg per mg of toluene, accounting for 97% of the donated electrons. Since the ammonia concentration decreased during degradation, dissimilatory reduction of nitrate to ammonia was not the reductive process. The degradation of toluene was modelled by classical Monod kinetics. The maximum specific rate of degradation, k, was estimated to be 0.71 mg toluene per mg of protein per hour, and the Monod saturation constant, K s , to be 0.2 mg toluene/l. The maximum specific growth rate, max , was estimated to be 0.1 per hour, and the yield coefficient, Y, was 0.14 mg protein per mg toluene.Abbreviations NVWP Non Volatile Water-soluble Products  相似文献   

8.
Polyvinyl alcohol was biodegraded under denitrifying conditions with a microbial community originated from a municipal wastewater treatment plant. The derived microbial consortium was capable of polyvinyl alcohol degradation under both denitrifying and aerobic conditions. The community dynamics was monitored by temperature gradient gel electrophoresis, and a principal utilizing organism was identified and assigned as Steroidobacter sp. PD. The possible role of Steroidobacter sp. PD was also investigated by sequencing the 16S rDNA clone library prepared from the degrading community. qPCR analysis showed that the fraction of the microorganism in the community was very low initially (0.02%) and had reached to about 16% by the end of the biodegradation experiment. The study revealed that polyvinyl alcohol can be biodegraded in a water environment not only under aerobic but also under denitrifying conditions.  相似文献   

9.
Summary A denitrifying bacterium showing typical characteristics of Pseudomonas sp. (Al1) capable of growth on 1-heptadecene as the sole source of carbon and energy has been isolated from a hydrocarbon-polluted marine sediment by using classical enrichment techniques. The generation time for anaerobic growth on 1-heptadecene was 24 h, and the percentage of hydrocarbon degradation under anaerobic conditions ranged from 19 to 23%. The emulsifying capacity was observed and suggested that Al1 cultivated anaerobically on heptadecene produced surface-active agents. Offprint requests to: M. Gilewicz  相似文献   

10.
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O(2)-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O(2)-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO(2)(-)-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO(2)(-)-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO(3)(-)-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N(2)). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.  相似文献   

11.
The denitrifying betaproteobacterium "Aromatoleum aromaticum" strain EbN1 degrades several aromatic compounds, including ethylbenzene, toluene, p-cresol, and phenol, under anoxic conditions. The hydrophobicity of these aromatic solvents determines their toxic properties. Here, we investigated the response of strain EbN1 to aromatic substrates at semi-inhibitory (about 50% growth inhibition) concentrations under two different conditions: first, during anaerobic growth with ethylbenzene (0.32 mM) or toluene (0.74 mM); and second, when anaerobic succinate-utilizing cultures were shocked with ethylbenzene (0.5 mM), toluene (1.2 mM), p-cresol (3.0 mM), and phenol (6.5 mM) as single stressors or as a mixture (total solvent concentration, 2.7 mM). Under all tested conditions impaired growth was paralleled by decelerated nitrate-nitrite consumption. Additionally, alkylbenzene-utilizing cultures accumulated poly(3-hydroxybutyrate) (PHB) up to 10% of the cell dry weight. These physiological responses were also reflected on the proteomic level (as determined by two-dimensional difference gel electrophoresis), e.g., up-regulation of PHB granule-associated phasins, cytochrome cd(1) nitrite reductase of denitrification, and several proteins involved in oxidative (e.g., SodB) and general (e.g., ClpB) stress responses.  相似文献   

12.
Denitrificationis the ability of bacteria to use nitro-gen oxides(NO3-and NO2-)as electron acceptorsto pro-duce gaseous nitrogen,mainly N2.The oxidation of or-ganic material coupled to reduction of oxygen leads to ahigher energy yield than reduction of nitrate.Oxygen iscommonly accepted to be the first choice as electron ac-ceptor[1].Therefore,denitrifying is generally thought toonly occur under almost anaerobic conditions.Anefficientwastewater treatment toremove nitrogen components relieson…  相似文献   

13.
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.  相似文献   

14.
Anaerobic degradation of toluene by a denitrifying bacterium   总被引:12,自引:0,他引:12  
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

15.
Anaerobic oxidation of p-cresol by a denitrifying bacterium   总被引:2,自引:0,他引:2  
Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. Nitrate is required as the external electron acceptor and is reduced to molecular N2. Reduction of the nitrate is stoichiometric, with pCr serving as the electron donor. In addition, the molar relationship between the electron acceptor (NO3-) reduced to the electron donor oxidized decreased to approximately 2:3 and then to 1:3 when p-hydroxybenzyl alcohol or p-hydroxybenzaldehyde, respectively, served as substrates. The decreased ratios were to be expected when the partially oxidized intermediates served as substrates, because they provided correspondingly less reducing power for pOHB formation. The anaerobic oxidation of pCr by PC-07 demonstrates a mechanism whereby aromatic compounds can be transformed in anoxic environments.  相似文献   

16.
In a complex medium with the energy source as the limiting nutrient factor and under anaerobic growth conditions, Streptococcus agalactiae fermented 75% of the glucose to lactic acid and the remainder to acetic and formic acids and ethanol. By using the adenosine triphosphate (ATP) yield constant of 10.5, the molar growth yield suggested 2 moles of ATP per mole of glucose from substrate level phosphorylation. Under similar growth conditions, pyruvate was fermented 25% to lactic acid, and the remainder was fermented to acetic and formic acids. The molar growth yield suggested 0.75 mole of ATP per mole of pyruvate from substrate level phosphorylation. Under aerobic growth conditions about 1 mole of oxygen was consumed per mole of glucose; about one-third of the glucose was converted to lactic acid and the remainder to acetic acid, acetoin, and carbon dioxide. Molar growth yields indicated 5 moles of ATP per mole of glucose. Estimates based on products of glucose degradation suggested that about one-half of the ATP was derived from substrate level phosphorylation and one-half from oxidative phosphorylation. Addition of 0.5 m 2,4-dinitrophenol reduced the growth yield to that occurring in the absence of oxygen. Aerobic pyruvate degradation resulted in 30% of the substrate becoming reduced to lactic acid and the remainder being converted to acetic acid and carbon dioxide, with small amounts of formic acid and acetoin. The molar growth yields and products found suggested that 0.70 mole of ATP per mole of pyruvate resulted from substrate level phosphorylation and 0.4 mole per mole of pyruvate resulted from oxidative phosphorylation.  相似文献   

17.
A novel denitrifying bacterium, strain 72Chol, was enriched and isolated under strictly anoxic conditions on cholesterol as sole electron donor and carbon source. Strain 72Chol grew on cholesterol with oxygen or nitrate as electron acceptor. Strictly anaerobic growth in the absence of oxygen was demonstrated using chemically reduced culture media. During anaerobic growth, nitrate was initially reduced to nitrite. At low nitrate concentrations, nitrite was further reduced to nitrogen gas. Ammonia was assimilated. The degradation balance measured in cholesterol-limited cultures and the amounts of carbon dioxide, nitrite, and nitrogen gas formed during the microbial process indicated a complete oxidation of cholesterol to carbon dioxide. A phylogenetic comparison based on total 16S rDNA sequence analysis indicated that the isolated micro-organism, strain 72Chol, belongs to the β2-subgroup in the Proteobacteria and is related to Rhodocyclus, Thauera, and Azoarcus species. Received: 16 July 1996 / Accepted: 5 December 1996  相似文献   

18.
Anaerobic degradation of toluene by a denitrifying bacterium.   总被引:12,自引:11,他引:1       下载免费PDF全文
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

19.
Anaerobic oxidation of p-cresol by a denitrifying bacterium.   总被引:10,自引:8,他引:2       下载免费PDF全文
Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. Nitrate is required as the external electron acceptor and is reduced to molecular N2. Reduction of the nitrate is stoichiometric, with pCr serving as the electron donor. In addition, the molar relationship between the electron acceptor (NO3-) reduced to the electron donor oxidized decreased to approximately 2:3 and then to 1:3 when p-hydroxybenzyl alcohol or p-hydroxybenzaldehyde, respectively, served as substrates. The decreased ratios were to be expected when the partially oxidized intermediates served as substrates, because they provided correspondingly less reducing power for pOHB formation. The anaerobic oxidation of pCr by PC-07 demonstrates a mechanism whereby aromatic compounds can be transformed in anoxic environments.  相似文献   

20.
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (??w), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号