首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M Sivaraja  J Tso  G C Dismukes 《Biochemistry》1989,28(24):9459-9464
EPR studies have revealed that removal of calcium using citric acid from the site in spinach photosystem II which is coupled to the photosynthetic O2-evolving process produces a structural change in the manganese cluster responsible for water oxidation. If done in the dark, this yields a modified S1' oxidation state which can be photooxidized above 250 K to form a structurally altered S2' state, as seen by formation of a "modified" multiline EPR signal. Compared to the "normal" S2 state, this new S2'-state EPR signal has more lines (at least 25) and 25% narrower 55Mn hyperfine splittings, indicative of disruption of the ligands to manganese. The calcium-depleted S2' oxidation state is greatly stabilized compared to the native S2 oxidation state, as seen by a large increase in the lifetime of the S2' EPR signal. Calcium reconstitution results in the reduction of the oxidized tyrosine residue 161YD+ (Em approximately 0.7-0.8 V, NHE) within the reaction center D1 protein in both the S1' and S2' states, as monitored by its EPR signal intensity. We attribute this to reduction by Mn. Thus a possible structural role which calcium plays is to bring YD+ into redox equilibrium with the Mn cluster. Photooxidation of S2' above 250 K produces a higher S state (S3 or S4) having a new EPR signal at g = 2.004 +/- 0.003 and a symmetric line width of 163 +/- 3 G, suggestive of oxidation of an organic donor, possibly an amino acid, in magnetic contact with the Mn cluster. This EPR signal forms in a stoichiometry of 1-2 relative to YD+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Inhibition of soybean lipoxygenase (L-1) and potato 5-lipoxygenase (5-PLO) by the pyrazoline derivatives phenidone and BW755C only occurs after oxidation of these compounds by the peroxidase-like activity of the lipoxygenases. There is a clear relationship between this oxidation and the irreversible inactivation of L-1. The final product of phenidone oxidation by L-1, 4,5-didehydrophenidone, is not responsible of this inactivation, but the species derived from a one-electron oxidation of phenidone plays a key role in L-1 inactivation. In the absence of O2, inactivation of 1 mol of L-1 occurs after the oxidation of 34 mol of phenidone and the covalent binding of 0.8 mol of phenidone-derived metabolite(s) to L-1. In the presence of O2, inactivation of 1 mol of L-1 occurs already after oxidation of 11 mol of phenidone and only involves the covalent binding of 0.4 mol of phenidone-derived metabolite(s) to L-1. A mechanism is proposed for L-1 inactivation by phenidone, which involves the irreversible binding of a phenidone metabolite to the protein and the oxidation of an L-1 amino acid residue (in the presence of O2).  相似文献   

3.
3-Hydroxyanthranilate-3,4-dioxygenase (HAD) is a non-heme Fe(II) dependent enzyme that catalyzes the oxidative ring-opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconic semialdehyde. The enzymatic product subsequently cyclizes to quinolinate, an intermediate in the biosynthesis of nicotinamide adenine dinucleotide. Quinolinate has also been implicated in important neurological disorders. Here, we describe the mechanism by which 4-chloro-3-hydroxyanthranilate inhibits the HAD catalyzed reaction. Using overexpressed and purified bacterial HAD, we demonstrate that 4-chloro-3-hydroxyanthranilate functions as a mechanism-based inactivating agent. The inactivation results in the consumption of 2 +/- 0.8 equiv of oxygen and the production of superoxide. EPR analysis of the inactivation reaction demonstrated that the inhibitor stimulated the oxidation of the active site Fe(II) to the catalytically inactive Fe(III) oxidation state. The inactivated enzyme can be reactivated by treatment with DTT and Fe(II). High resolution ESI-FTMS analysis of the inactivated enzyme demonstrated that the inhibitor did not form an adduct with the enzyme and that four conserved cysteines were oxidized to two disulfides (Cys125-Cys128 and Cys162-Cys165) during the inactivation reaction. These results are consistent with a mechanism in which the enzyme, complexed to the inhibitor and O2, generates superoxide which subsequently dissociates, leaving the inhibitor and the oxidized iron center at the active site.  相似文献   

4.
The Bacillus subtilis endospore coat protein CotA shows laccase activity. By using comparative modeling techniques, we were able to derive a model for CotA based on the known x-ray structures of zucchini ascorbate oxidase and Cuprinus cereneus laccase. This model of CotA contains all the structural features of a laccase, including the reactive surface-exposed copper center (T1) and two buried copper centers (T2 and T3). Single amino acid substitutions in the CotA T1 copper center (H497A, or M502L) did not prevent assembly of the mutant proteins into the coat and did not alter the pattern of extractable coat polypeptides. However, in contrast to a wild type strain, both mutants produced unpigmented colonies and spores unable to oxidize syringaldazine (SGZ) and 2'2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The CotA protein was purified to homogeneity from an overproducing Escherichia coli strain. The purified CotA shows an absorbance and a EPR spectra typical of blue multicopper oxidases. Optimal enzymatic activity was found at < or =pH 3.0 and at pH 7.0 for ABTS or SGZ oxidation, respectively. The apparent K(m) values for ABTS and SGZ at 37 degrees C were of 106 +/- 11 and 26 +/- 2 microm, respectively, with corresponding k(cat) values of 16.8 +/- 0.8 and 3.7 +/- 0.1 s(-1). Maximal enzyme activity was observed at 75 degrees C with ABTS as substrate. Remarkably, the coat-associated or the purified enzyme showed a half-life of inactivation at 80 degrees C of about 4 and 2 h, respectively, indicating that CotA is intrinsically highly thermostable.  相似文献   

5.
A series of thiols having net charge (Z) varying from -2 to +3 were studied using aerobic suspensions of Chinese hamster V79-171 cells in pH 7.4 medium at 297 K to evaluate the rate of uptake by cells and the extent of radioprotection as a function of thiol concentration in cells. For measurement of cellular levels, cells were separated from medium by centrifugation through silicone oil and tritiated water was employed to determine cell water volume. Estimated half-lives for uptake were: 2-mercaptosuccinate (Z = -2), greater than or equal to 1 h; 3-mercaptopropanoate (MPA, Z = -1), less than 2 min; 2-mercaptoethanol (2ME, Z = 0), less than 2 min; cysteamine (CyA, Z = +1), less than 2 min; N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065, Z approximately +2), approximately 40 min; N1-(2-mercaptoethyl)spermidine (WR-35980, Z approximately +3), greater than or equal to 10 h. After equilibration the cellular concentration of MPA was 60 +/- 8% of the medium level; the corresponding values for 2ME and CyA were 95 +/- 3 and 180 +/- 12%, respectively, but equilibrium was not reached for the other thiols studied. Those thiols taken up at significant rates were evaluated in terms of their ability to protect against aerobic gamma-ray-induced lethality. The results, summarized in terms of the cellular concentration of thiol (mmol dm-3) needed to achieve an aerobic radioprotection factor of 1.5, were as follows: MPA, 80 +/- 15; 2ME, 24 +/- 2; CyA, 4.7 +/- 1.3; WR-1065, 3.4 +/- 0.6. These values accorded well with those predicted from hydroxyl radical scavenging and DNA radical repair rates obtained using pBR322 DNA as a model system. This shows that hydroxyl radical scavenging and DNA radical repair are important mechanisms in the protection of cells by thiols and that the net charge on the thiol is a significant factor in its effectiveness. The results indicate that in air hydroxyl radical scavenging is the dominant mode of action by MPA, but that chemical repair of DNA radicals becomes significant for 2ME and is the dominant mechanism of protection for CyA and WR-1065.  相似文献   

6.
The continuous infusion or bolus injection of the platelet-activating factor (PAF) is associated with profound hypotension, marked reductions of renal plasma flow, glomerular filtration, and urinary sodium excretion. All these effects are inhibited by blocking PAF receptors. To examine further the potential mediators of PAF on renal function, we utilized L-655,240 (6 mg/kg, intravenously), a thromboxane-prostaglandin endoperoxide antagonist, to study the systemic and renal response to PAF (0.8 micrograms/kg, intravenously) in the anesthetized dog, using clearance methodology. PAF decreased blood pressure from 115 +/- 7 to 54 +/- 4 mmHg (1 mmHg = 133.3 Pa), renal plasma flow from 105 +/- 6 to 74 +/- 56 mL/min, and glomerular filtration from 43 +/- 3 to 32 +/- 1 mL/min. PAF also reduced urine volume from 1.1 +/- 0.2 to 0.4 +/- 0.1 mL/min, and urinary sodium from 158 +/- 7 to 86 +/- 7 mu equiv./min. L-655,240 alone had no significant effect on blood pressure, renal plasma flow, and filtration rate, at any dose. However, the 6-mg/kg dose resulted in a slight elevation of diuresis, from 1.1 +/- 0.2 to 1.9 +/- 0.1 mL/min, and urinary sodium, from 134 +/- 13 to 212 +/- 19 mu equiv./min. All doses of L-655,240 blocked the effect of PAF on blood pressure. However, the two lower doses of this antagonist (1 and 3 mg/kg) failed to prevent the PAF-induced fall of renal plasma flow and filtration rate, and attenuated the effect on urinary sodium in a dose-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.  相似文献   

8.
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.  相似文献   

9.
Geijer P  Morvaridi F  Styring S 《Biochemistry》2001,40(36):10881-10891
Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S(3) state of the oxygen-evolving complex in photosystem II. The S(3) state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 +/- 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S(3) state remains. We propose that the signal arises from the interaction between the Mn cluster and Y(Z), resulting in the spin-coupled S(2)Y(Z)(*) signal. Our data suggest that the potential of the Y(Z)(*)/Y(Z) redox couple is sensitive to the ambient pH in the S(3) state. The alkaline pH decreases the potential of the Y(Z)(*)/Y(Z) couple so that Y(Z) can give back an electron to the S(3) state, thereby obtaining the S(2)Y(Z)(*) EPR signal. The tyrosine oxidation also involves proton release from Y(Z), and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S(3)Y(Z) to S(2)Y(Z)(*) by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S(3)Y(Z) state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of Y(Z)(*)/Y(Z) and S(3)/S(2) at different pH values are discussed. We also compare the pH-induced S(2)Y(Z)(*) signal with the S(2)Y(Z)(*) signal from Ca(2+)-depleted photosystem II.  相似文献   

10.
The reaction of dioxygen with the ferrous forms of the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was studied by photolysis of the respective ferrous-CO complexes in the presence of dioxygen. Reaction of ferrous CCP(MI) with dioxygen transiently formed a FeII-O2 complex (bimolecular rate constant = (3.8 +/- 0.3) x 10(4) M-1 s-1 at pH 6.0; 23 degrees C) that reacted further (first-order rate constant = 4 +/- 1 s-1) to form a product with an absorption spectrum and an EPR radical signal at g = 2.00 that were identical to those of compound I formed by the reaction of CCP(MI)III with peroxide. Thus, the product of the reaction of CCP(MI)II with dioxygen retained three of the four oxidizing equivalents of dioxygen. Gel electrophoresis of the CCP(MI)II + dioxygen reaction products showed that covalent dimeric and trimeric forms of CCP(MI) were produced by the reaction of CCP(MI)II with dioxygen. Photolysis of the CCP(MI)II-CO complex in the presence of ferrous cytochrome c prevented the appearance of the cross-linked forms and resulted in the oxidation of 3 mol of cytochrome c/mol of CCP(MI)II-CO added. The results provide evidence that reaction of CCP(MI)II with dioxygen causes transient oxidation of the enzyme by 1 equiv above the normal compound I oxidation state. Mutations that eliminate the broad EPR signal at g = 2.00 characteristic of the compound I radical also prevented the rapid oxidation of the ferrous enzyme by dioxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The electrons extracted from the CaMn(4) cluster during water oxidation in photosystem II are transferred to P(680)(+) via the redox-active tyrosine D1-Tyr161 (Y(Z)). Upon Y(Z) oxidation a proton moves in a hydrogen bond toward D1-His190 (His(Z)). The deprotonation and reprotonation mechanism of Y(Z)-OH/Y(Z)-O is of key importance for the catalytic turnover of photosystem II. By light illumination at liquid helium temperatures (~5 K) Y(Z) can be oxidized to its neutral radical, Y(Z)(?). This can be followed by the induction of a split EPR signal from Y(Z)(?) in a magnetic interaction with the CaMn(4) cluster, offering a way to probe for Y(Z) oxidation in active photosystem II. In the S(3) state, light in the near-infrared region induces the split S(3) EPR signal, S(2)'Y(Z)(?). Here we report on the pH dependence for the induction of S(2)'Y(Z)(?) between pH 4.0 and pH 8.7. At acidic pH the split S(3) EPR signal decreases with the apparent pK(a) (pK(app)) ~ 4.1. This can be correlated to a titration event that disrupts the essential H-bond in the Y(Z)-His(Z) motif. At alkaline pH, the split S(3) EPR signal decreases with the pK(app) ~ 7.5. The analysis of this pH dependence is complicated by the presence of an alkaline-induced split EPR signal (pK(app) ~ 8.3) promoted by a change in the redox potential of Y(Z). Our results allow dissection of the proton-coupled electron transfer reactions in the S(3) state and provide further evidence that the radical involved in the split EPR signals is indeed Y(Z)(?).  相似文献   

12.
In the field of photosynthetic water oxidation it has been under debate whether Tyrosine(Z) (Tyr(Z)) acts as a hydrogen or an electron acceptor from water. In the former concept, direct contact of Tyr(Z) with substrate water has been assumed. However, there is no direct evidence for the interaction between Tyr(Z) and substrate water in active Photosystem II (PSII), instead most experiments have been performed on inhibited PSII. Here, this problem is tackled in active PSII by combining low temperature EPR measurements and quantum chemistry calculations. EPR measurements observed that the maximum yield of Tyr(Z) oxidation at cryogenic temperature in the S(0) and S(1) states was around neutral pH and was essentially pH-independent. The yield of Tyr(Z) oxidation decreased at acidic and alkaline pH, with pKs at 4.7-4.9 and 7.7, respectively. The observed pH-dependent parts at low and high values of pH can be explained as due to sample inactivation, rather than active PSII. The reduction kinetics of Tyr(Z)(.) in the S(0) and S(1) states were pH independent at pH range from 4.5 to 8. Therefore, the change of the pH in bulk solution probably has no effect on the Tyr(Z) oxidation and Tyr(Z)(.) reduction at cryogenic temperature in the S(0) and S(1) states of the active PSII. Theoretical calculations indicate that Tyr(Z) becomes more difficult to oxidize when a H(2)O molecule interacts directly with it. It is suggested that Tyr(Z) is probably located in a hydrophobic environment with no direct interaction with the substrate H(2)O in active PSII. These results provide new insights on the function and mechanism of water oxidation in PSII.  相似文献   

13.
Paramagnetic probes of the domain structure of histidine-rich glycoprotein   总被引:1,自引:0,他引:1  
The interaction of Cu2+ and Fe3+-mesoporphyrin with histidine-rich glycoprotein (HRG) from rabbit serum was examined spectroscopically. The first equivalent of Cu2+ binds to HRG producing a type II electron paramagnetic resonance (EPR) spectrum with g[[ = 2.25, gm = 2.05, A[[ = 0.019 cm-1 (180 G), and superhyperfine along gm. These spectral parameters suggest moderately covalent coordination of Cu2+ to the protein by nitrogens. With increasing Cu2+ the superhyperfine disappears; however, the g and A values change only marginally. The increase in EPR signal amplitude throughout the addition of 1-15 equiv of Cu2+ is linear and thereafter maximizes, suggesting 18-22 equiv are bound. In contrast, changes in the circular dichroism spectrum at 280 nm appear sigmoidal and can be interpreted as the binding of Cu2+ to two structurally distinct regions of the protein. Evidence for two structurally distinct binding domains is found by comparing EPR spectra of Cu2+ complexes of HRG with spectra from complexes of two of its major proteolysis products (peptides). After binding 1 equiv of Cu2+, both the 30-kDa histidine-rich peptide and the native protein exhibit identical spectra including the pronounced superhyperfine. In contrast, the spectrum of the histidine-normal 45-kDa peptide with 1 equiv of Cu2+ bound lacks superhyperfine and parallels closely that of the native protein with 20 equiv bound. Finally, Fe3+-mesoporphyrin binds to HRG exhibiting both high-spin (g = 6.05) and low-spin (gz = 2.94, gy = 2.25, gx = 1.50) EPR resonances, and the latter imply bis(histidine) coordination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipoxygenases (LOXs) are multifunctional enzymes that catalyze the oxygenation of polyunsaturated fatty acids to hydroperoxy derivatives; they also convert hydroperoxy fatty acids to epoxy leukotrienes and other secondary products. LOXs undergo suicidal inactivation but the mechanism of this process is still unclear. We investigated the mechanism of suicidal inactivation of the rabbit 15-lipoxygenase by [1-(14)C]-(15S,5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid (15-HpETE) and observed covalent modification of the enzyme protein. In contrast, nonlipoxygenase proteins (bovine serum albumin and human gamma-globulin) were not significantly modified. Under the conditions of complete enzyme inactivation we found that 1.3 +/- 0.2 moles (n = 10) of inactivator were bound per mole lipoxygenase, and this value did depend neither on the enzyme/inactivator ratio nor on the duration of the inactivation period. Covalent modification required active enzyme protein and proceeded to a similar extent under aerobic and anaerobic conditions. In contrast, [1-(14)C]-(15S,5Z,8Z,11Z,13E)-15-hydroxyeicosa-5,8,11,13-tetraenoic acid (15-HETE), which is no substrate for epoxy-leukotriene formation, did not inactivate the enzyme and protein labeling was minimal. Separation of proteolytic cleavage peptides (Lys-C endoproteinase digestion) by tricine SDS-PAGE and isoelectric focusing in connection with N-terminal amino acid sequencing revealed covalent modification of several active site peptides. These data suggest that 15-lipoxygenase-catalyzed conversion of (15S,5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid to 14,15-epoxy-leukotriene leads to the formation of reactive intermediate(s), which are covalently linked to the active site. Therefore, this protein modification contributes to suicidal inactivation.  相似文献   

15.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The amino acid sequence of human myoglobin (Mb) is similar to other mammalian Mb except for a unique cysteine residue at position 110 (Cys(110)). Anaerobic treatment of ferrous forms of wild-type human Mb, the C110A variant of human Mb or horse heart Mb, with either authentic NO or chemically derived NO in vitro yields heme-NO complexes as detected by electron paramagnetic resonance spectroscopy (EPR). By contrast, no EPR-detectable heme-NO complex was observed from the aerobic reactions of NO and either the ferric or oxy-Mb forms of wild-type human or horse heart myoglobins. Mass analyses of wild-type human Mb treated aerobically with NO indicated a mass increase of approximately 30 atomic mass units (i.e., NO/Mb = 1 mol/mol). Mass analyses of the corresponding apoprotein after heme removal showed that NO was associated with the apoprotein fraction. New electronic maxima were detected at A(333 nm) (epsilon = 3665 +/- 90 mol(-)(1) cm(-)(1); mean +/- S.D.) and A(545 nm) (epsilon = 44 +/- 3 mol(-)(1) cm(-)(1)) in solutions of S-nitrosated wild-type human Mb (similar to S-nitrosoglutathione). Importantly, the sulfhydryl S-H stretch vibration for Cys(110) measured by Fourier transform infrared (nu approximately 2552 cm(-)(1)) was absent for both holo- and apo- forms of the wild-type human protein after aerobic treatment of the protein with NO. Together, these data indicate that the reaction of wild-type human Mb and NO yields either heme-NO or a novel S-nitrosated protein dependent on the oxidation state of the heme iron and the presence or absence of dioxygen.  相似文献   

17.
The O2-evolving complex of photosystem II, Mn 4Ca, cycles through five oxidation states, S0,..., S4, during its catalytic function, which involves the gradual abstraction of four electrons and four protons from two bound water molecules. The direct oxidant of the complex is the tyrosine neutral radical, YZ(*), which is transiently produced by the highly oxidizing power of the photoexcited chlorophyll species P680. EPR characterization of YZ(*) has been limited, until recently, to inhibited (non-oxygen-evolving) preparations. A number of relatively recent papers have demonstrated the trapping of YZ(*) in O2-evolving preparations at liquid helium temperatures as an intermediate of the S0 to S1, S1 to S2, and S2 to S3 transitions. The respective EPR spectra are broadened and split at g approximately 2 by the magnetic interaction with the Mn cluster, but this interaction collapses at temperatures higher than about 100K [Zahariou et al. (2007) Biochemistry 46, 14335 -14341]. We have conducted a study of the Tyr Z(*) transient in the temperature range 77-240 K by employing rapid or slow EPR scans. The results reveal for the first time high-resolution X-band spectra of Tyr Z(*) in the functional system and at temperatures close to the onset of the S-state transitions. We have simulated the S 2Y Z(*) spectrum using the simulation algorithm of Svistunenko and Cooper [(2004) Biophys. J. 87, 582 -595]. The small g(x) = 2.00689 value inferred from the analysis suggests either a H-bonding of Tyr Z (*) (presumably with His190) that is stronger than what has been assumed from studies of Tyr D(*) or Tyr Z(*) in Mn-depleted preparations or a more electropositive environment around Tyr Z(*). The study has also yielded for the first time direct information on the temperature variation of the YZ(*)/QA(-) recombination reaction in the various S states. The reaction follows biphasic kinetics with the slow phase dominating at low temperatures and the fast phase dominating at high temperatures. It is tentatively proposed that the slow phase represents the action of the YZ(*)/YZ(-) redox couple while the fast phase represents that of the YZ(*)/YZH couple; it is inferred that Tyr Z at elevated temperatures is protonated at rest. It is also proposed that YZ(*)/YZH is the couple that oxidizes the Mn cluster during the S1-S2 and S2-S3 transitions. A simple mechanism ensuring a rapid (concerted) protonation of Tyr Z upon oxidation of the Mn cluster is discussed, and also, a structure-based molecular model suggesting the participation of His190 into two hydrogen bonds is proposed.  相似文献   

18.
The parameters governing the water proton relaxivity of the [Gd(EGTA-BA-(CH2)12)]nn+ polymeric complex were determined through global analysis of 17O NMR, EPR and nuclear magnetic relaxation dispersion (NMRD) data [EGTA-BA2- = 3,12-bis(carbamoylmethyl)- 6,9-dioxa-3,12-diazatetradecanedioate(2-)]. The Lipari-Szabo approach that distinguishes the global motion of the polymer (tau g) from the local motion of the Gd(III)-water vector (tau l) was necessary to describe the 1H and 17O longitudinal relaxation rates; therefore for the first time it was included in the global simultaneous analysis of the EPR, 17O NMR and NMRD data. The polymer consists on average of only five monomeric units, which limits the intramolecular hydrophobic interactions operating between the (CH2)12 groups. Hence the global rotational correlation time is not very high (tau g298 = 3880 +/- 750 ps) compared to the corresponding DTPA-BA-based polymer (about 15 monomeric units), where tau g298 = 6500 ps. As a consequence, the relaxivity is limited by the rotation, which precludes the advantage obtained from the fast exchanging chelating unit (kex298 = 2.2 +/- 0.1 x 10(6) s-1).  相似文献   

19.
The electronic and magnetic properties of the selenium-substituted 2[4Fe-4Se]2+/+ ferredoxin (Fd) from Clostridium pasteurianum have been investigated by EPR and M?ssbauer spectroscopy. The [4Fe-4Se]2+ clusters of oxidized Fd are diamagnetic and the M?ssbauer spectra are nearly identical to those of oxidized 2[4Fe-4S]2+ Fd. The addition of 2e- per molecule of Se-substituted Fd causes the simultaneous appearance of three EPR signals: one (g1,2,3 = 2.103, 1.940, 1.888) is reminiscent of [4Fe-4S]+ EPR spectra and accounts for 0.7 to 0.8 spin/molecule. The two others consist of a broad signal with g = 4.5, 3.5, and approximately 2 (0.7 to 0.8 spin/molecule) and of a narrow peak at g = 5.172 which is observed up to 60 K. Peculiar features are also present in the M?ssbauer spectra of 2[4Fe-4Se]+ Fd below 20 K: a subcomponent with lines near to +/- 4 mm/s and accounting for 20% of the total iron corresponds to two antiferromagnetically coupled sites in approximately a 3:1 ratio and displays fully developed paramagnetic hyperfine interactions at 4.2 K without any applied field. At 77 K, however, the reduced Se-substituted Fd yields a M?ssbauer spectrum similar to that of 2[4Fe-4S]+ Fd. The new EPR and M?ssbauer spectroscopic features of the 2[4Fe-4Se]+ Fd are attributed to S = 3/2 and S = 7/2 spin states which accompany the classical S = 1/2 state of [4Fe-4X]+ (X = S, Se) structures.  相似文献   

20.
Debus RJ  Campbell KA  Pham DP  Hays AM  Britt RD 《Biochemistry》2000,39(21):6275-6287
Recent models for water oxidation in photosystem II postulate that the tyrosine Y(Z) radical, Y(Z)(*), abstracts both an electron and a proton from the Mn cluster during one or more steps in the catalytic cycle. This coupling of proton- and electron-transfer events is postulated to provide the necessary driving force for oxidizing the Mn cluster in its higher oxidation states. The formation of Y(Z)(*) requires the deprotonation of Y(Z) by His190 of the D1 polypeptide. For Y(Z)(*) to abstract both an electron and a proton from the Mn cluster, the proton abstracted from Y(Z) must be transferred rapidly from D1-His190 to the lumenal surface via one or more proton-transfer pathways. The proton acceptor for D1-His190 has been proposed to be either Glu189 of the D1 polypeptide or a group positioned by this residue. To further define the role of D1-Glu189, 17 D1-Glu189 mutations were constructed in the cyanobacterium Synechocystis sp. PCC 6803. Several of these mutants are of particular interest because they appear to assemble Mn clusters in 70-80% of reaction centers in vivo, but evolve no O(2). The EPR and electron-transfer properties of PSII particles isolated from the D1-E189Q, D1-E189L, D1-E189D, D1-E189N, D1-E189H, D1-E189G, and D1-E189S mutants were examined. Intact PSII particles isolated from mutants that evolved no O(2) also exhibited no S(1) or S(2) state multiline EPR signals and were unable to advance beyond an altered Y(Z)(*)S(2) state, as shown by the accumulation of narrow "split" EPR signals under multiple turnover conditions. In the D1-E189G and D1-E189S mutants, the quantum yield for oxidizing the S(1) state Mn cluster was very low, corresponding to a > or =1400-fold slowing of the rate of Mn oxidation by Y(Z)(*). In Mn-depleted D1-Glu189 mutant PSII particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in the mutants was accelerated, showing that the mutations alter the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-Glu189 participating in a network of hydrogen bonds that modulates the properties of both Y(Z) and the Mn cluster and are consistent with proposals that D1-Glu189 positions a group that accepts a proton from D1-His190.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号