首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】揭示苜蓿根瘤菌噬菌体的形态学特征及主要壳蛋白g23基因的分布地位,为根瘤菌噬菌体的生态学研究提供数据支持。【方法】以中华苜蓿根瘤菌(Sinorhizobium meliloti USDA1002T)为宿主,采用双层平板法分离土壤环境中的苜蓿根瘤菌噬菌体,利用电子显微镜观察纯化的噬菌体形态特征;提取噬菌体DNA,PCR扩增编码噬菌体壳蛋白的g23基因,构建系统进化树,以形态学鉴定和分子生物学相结合的方法,明确分离获得的苜蓿根瘤菌噬菌体g23基因的系统进化地位。【结果】分离获得了3株噬菌体,头部均呈二十面体,直径大小为81–86 nm,尾部有收缩尾鞘,长度大约为54–70 nm。克隆测序结果显示,获得的3株噬菌体g23基因株间相似度较高,但与可培养的Exo T-、Schizo T-、T-、Pseudo T-evens相似度较低。系统进化分析表明,获得的3株噬菌体不隶属于目前已划分的不同环境噬菌体g23基因的分类类群中。【结论】3株噬菌体均属于肌尾噬菌体科的裂性噬菌体,与目前获得的所有噬菌体g23基因相似性较低,属于新的侵染中华苜蓿根瘤菌的噬菌体株。  相似文献   

2.
Protein 38 of the Escherichia coli phage T4 is thought to be required catalytically for the assembly of the long tail fibers of this phage. It is shown that this protein of phage T2 and the T-even-type phage K3 and Ox2 act differently. It was found that NH2-terminal fragments of the protein, expressed from cloned fragments of gene 38 of phage K3, bind to gene 38 amber mutants of phage T2. Such phage or T2 gene 38 amber mutants, grown on a non-permissive host, possess a complete set of six tail fibers but are non-infectious. Both types of non-infectious phage could be repaired by incubation with an extract of cells harboring a cloned gene 38 of a host range mutant of phage K3, K3hx. The repaired phages had the host range of K3hx and not of T2. Immuno-electron microscopy showed that protein 38 is located at the free ends of the long tail fibers of phages T2, K3 and Ox2. The protein serves the recognition of the cellular receptor, i.e. it acts as an adhesin.  相似文献   

3.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

4.
Summary The ocr + gene function (gp 0.3) of bacteriophages T3 and T7 not only counteracts type I (EcoB, EcoK) but also type III restriction endonucleases (EcoP1). Despite the presence of recognition sites, phage DNA as well as simultaneously introduced plasmid DNA are protected by ocr + expression against both the endonucleolytic and the methylating activities of the EcoP1 enzyme. Nevertheless, the EcoP1 protein causes the exclusion of T3 and T7 in P1-lysogenic cells, apparently by exerting a repressor-like effect on phage gene expression. T3 which induces an S-adenosylmethionine hydrolase is less susceptible to the repressor effect of the SAM-stimulated EcoP1 enzyme. The abundance of EcoP1 recognition sites in the T7 genome is explained by their near identity with the T7 DNA primase recognition site.Abbreviations d.p.m. decompositions per min - EcoB, EcoK, EcoP1, EcoP15, EcoRII, EcoR124, HinfIII restriction endonucleases coded by Escherichia coli strains B or K, E. coli plasmids P1, P15, RII or R124, and Haemophilus influenzae Rf 232, resp. - e.o.p. efficiency of plating - gp gene product (in the sense of protein) - m.o.i. multiplicity of infection (phage/cell) - ocr + gene function which overcomes classical restriction - p.f.u. plaque-forming units - SAM S-adenosylmethionine - sam + gene function with S-adenosylmethionine-cleaving enzyme (SAMase) activity - UV ultraviolet light Dedicated to Professor Konstantin Spies on the occasion of his sixtieth birthday  相似文献   

5.
Summary T4 derivatives that carry T4 tail fiber genes 34–38 have been isolated and characterized by genetic, structural and functional analysis. 32 T4 recombinants were identified by a marker rescue screen of 310 T4 clones generated by restriction of partial cytosine-containing T4 DNA with either HindIII or EcoRI and ligation into appropriately cleaved vectors. These tests defined 15 recombinant classes with respect to the contiguous stretches of genome recovered. Restriction enzyme structural analysis identified 7 HindIII fragments and 7 EcoRI fragments, established a restriction map covering about 11 kb, and indicated the orientation of the DNA inserts within the vectors. The cloned tail fiber genes are expressed efficiently from promoters and complement in vivo T4 phage carrying amber mutations in the tail fiber genes. Polypeptides corresponding to gp34-gp38 have been detected by SDS polyacrylamide gel electrophoresis of 35S-labeled extracts of appropriate T4 recombinant infected UV-treated host cells. The genetic, structural and functional maps of the T4 tail fiber gene cluster have been correlated, and provide a rational approach to genetically directed DNA sequence analysis of genes 34–38 and their mutant variants that affect the assembly, structure and function of the tail fibers.  相似文献   

6.
Summary pTU 100 is a hybrid plasmid constructed by cloning a 7.5 Kb EcoRI fragment (carrying the wildtype ompA gene) onto pSC 101 (Henning et al., 1979). This plasmid confers sensitivity to phages Tull* and K3h1 when present in an ompA host strain, due to the expression of the phage receptor protein II* from the plasmid ompA + gene. Plasmid mutants have been isolated that have become resistant to one or both of these phages. Restriction endonuclease analysis and DNA-sequencing studies in these plasmids demonstrate that a BamHI site and two PvuII sites are located within the ompA gene. BamHI cuts the gene at a site corresponding to residue 227 within a total of 325 amino acid residues.Neither the wildtype ompA gene nor the BamHI fragment encoding the NH2-terminal part of the protein (residues 1–227) could be transferred to a high copy number plasmid, presumably due to lethal overproduction of the protein or its NH2-terminal fragment. However, the NH2-terminal fragment derived from one of the ompA mutants of pTU100 could be transferred to the high copy number plasmid pBR322, and was expressed in the presence of the amber suppressors supD or supF. Under these conditions two new envelope proteins with apparent molecular weights of 30,000 and 24,000 were synthesized, and the cells became sensitive to phage TuII*, indicating the presence of phage receptor activity in the outer membrane. The major, 24,000 dalton protein has the molecular weight expected of a protein comprising residues 1–227 of protein II*. DNA-sequencing studies demonstrated that no termination codons are present in the DNA region immediately downstream from the BamHI site at residue 227 in this hybrid plasmid, and it is therefore likely that the 24,000-dalton protein arises from the posttranslational proteolytic cleavage of a larger polypeptide. The 30,000-dalton protein is a likely candidate for such a larger polypeptide. These results also demonstrate that the 98 CO2H-terminal residues of wildtype protein II* (resisdues 228–325) are not required either for the activity of the protein as a phage receptor or for its incorporation into the outer membrane.  相似文献   

7.
Gene 37 of phage T2 codes for a protein that, as a dimer, constitutes the most distal, receptor-recognizing part of its long tail fibers. It was found that, from a plasmid carrying a fragment of gene 37 that lacked a region of the gene encoding 87 CO2H-terminal amino acid residues, a protein was expressed that was slightly larger than that present in the phage. This size difference could not be accounted for. The missing region of gene 37 and also gene 38 (which codes for the auxiliary protein required for dimerization of protein 37) were cloned. Plasmids were constructed with gene 37, or gene 37 together with gene 38, under inducible control. Independent of the presence of the latter gene, a protein was produced that had the same size as protein 37 in the phage. A pulse-chase experiment revealed that a precursor of protein 37 is synthesized and processed such that approximately 120 amino acid residues, most likely CO2H-terminal, are removed. Therefore, the protein produced from the truncated gene was larger because it cannot be processed. This fact also solved an old puzzle: an amber fragment of protein 37 of phage T2 had been found to be larger than the mature protein. The amber codon could be located 24 codons away from the normal stop codon. Obviously, the fragment cannot be processed. The existence of this fragment demonstrates that processing occurs during phage maturation.  相似文献   

8.
Human killer immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and are involved in their immunoreactivity. While KIR with a long cytoplasmic tail deliver an inhibitory signal when bound to their respective major histocompatibility complex class I ligands, KIR with a short cytoplasmic tail can activate NK responses. The expansion of the KIR gene family originally appeared to be a phenomenon restricted to primates (human, apes, and monkeys) in comparison to rodents, which via convergent evolution have numerous C-type lectin-like Ly49 molecules that function analogously. Further studies have shown that multiple KIR are also present in cow and horse. In this study, we have identified by comparative genomics the first and possibly only KIR gene, named KIR2DL1, in the domesticated pig (Sus scrofa) allowing further evolutionary comparisons to be made. It encodes a protein with two extracellular immunoglobulin domains (D0 + D2), and a long cytoplasmic tail containing two inhibitory motifs. We have mapped the pig KIR2DL1 gene to chromosome 6q. Flanked by LILRa, LILRb, and LILRc, members of the leukocyte immunoglobulin-like receptor (LILR) family, on the centromeric end, and FCAR, NCR1, NALP7, NALP2, and GP6 on the telomeric end, pig demonstrates conservation of synteny with the human leukocyte receptor complex (LRC). Both the porcine KIR and LILR genes have diverged sufficiently to no longer be clearly orthologous with known human LRC family members.  相似文献   

9.
Arthrobacter sp. strain MIS38 was transformed with a shuttle vector containing the kanamycin resistant genekan (derived from Tn5) by an electroporation method. This shuttle vector is fromBrevibacterium lactofermentum andEscherichia coli, pULRS8: - The following optimal condition of electroporation was determined. A square wave pulse of 1 kV/cm electric field strength for 0.5 ms duration yielded 3 × 105 transformants/,g plasmid DNA. The number of transformants increased with the amount of DNA over the range 0.01-5 g. This host-vector system was then used successfully to clone and express a lipase gene fromArthrobacter sp. strain MIS38 into bothArthrobacter sp. MIS38 and E. coli JM109.  相似文献   

10.
11.
 CD38 is a leukocyte activation antigen and ectoenzyme [NAD(P)+ glycohydrolase; EC 3.2.2.6] involved in numerous immune functions. The human CD38 gene is complex [eight exons, >80 kilobases (kb) long] located on Chromosome 4p15, and part of the eukaryotic NAD+ glycohydrolase/ADP-ribosyl cyclase gene family. Because of the increasing relevance of the CD38 molecule in the host immune response to infectious, tumoral, and metabolic diseases, we investigated the genetic variability and linkage of the human CD38 locus. We report that (1) the restriction endonuclease Pvu II identifies a bi-allelic polymorphism here defined as formed by the alleles CD38 * A (12 kb) and CD38 * B (9/2.5 kb); (2) their frequency in the healthy Italian Caucasian population is 14% and 86%, respectively; (3) the polymorphic Pvu II site is located at the 5′ end of the first intron of the CD38 gene; (4) in conjunction with the polymorphic site, we identified a 900 base pair CpG island associated with the CD38 gene, with two potential Sp1 binding sites; (5) the CpG island may play a role in the regulation of CD38 expression and is hypomethylated in various cell lines; (6) by pulsed-field gel electrophoresis we show that CD38 and its paralogue, the bone-marrow stromal cell antigen BST-1 (CD157), map to the same 800 kb Avi II fragment, indicating that the two human ecto-NADase genes are closely linked. Received: 16 December 1998 / Revised: 26 January 1999  相似文献   

12.
The rabbit geneLpq, which codes for a low-density serum lipoprotein2, is linked (34.6 ± 5.3 centimorgans) to the Ig kappa light-chain gene (Ab). There is no evidence thatLpq is linked to another gene,Prt, that was previously found to be linked to theAb gene. This suggests that the gene order for the three genes isPrt- Ab- Lpq. Abbreviations used in this paper Ig immunoglobulin - a the heavy-chain variable-region geneAa - b the kappa light-chain geneAb - q the low-density serum lipoprotein geneLpq  相似文献   

13.
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37°C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaΦ23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.  相似文献   

14.
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy.  相似文献   

15.
I Riede 《Journal of bacteriology》1987,169(7):2956-2961
The lysis gene t of the T-even-like bacteriophage K3 has been cloned and sequenced. The gene codes for a protein with a predicted molecular weight of 25,200. Expression of the complete lysis protein was impossible, but peptides complementing T4 amber mutants in t are described. No known lysis protein of other phages is homologous to protein T. Also, the Escherichia coli phospholipase A is different from protein T. CelB, the lysis protein of the colicin E2 operon, shows a similarity to protein T. Sequences of colicins A, E1, and E2 are related to gene 38 sequences, the gene preceding t and coding for the phage adhesin. A common origin for colicin genes and phage genes is discussed, and a protein region in colicins that is responsible for receptor recognition is predicted.  相似文献   

16.
Bacteriophage replication requires specific host‐recognition. Some siphophages harbour a large complex, the baseplate, at the tip of their non‐contractile tail. This baseplate holds receptor binding proteins (RBPs) that can recognize the host cell‐wall polysaccharide (CWPS) and specifically attach the phage to its host. While most phages possess a dedicated RBP, the phage J‐1 that infects Lactobacillus casei seemed to lack one. It has been shown that the phage J‐1 distal tail protein (Dit) plays a role in host recognition and that its sequence comprises two inserted modules compared with ‘classical’ Dits. The first insertion is similar to carbohydrate‐binding modules (CBMs), whereas the second insertion remains undocumented. Here, we determined the structure of the second insertion and found it also similar to several CBMs. Expressed insertion CBM2, but not CBM1, binds to L. casei cells and neutralize phage attachment to the bacterial cell wall and the isolated and purified CWPS of L. casei BL23 prevents CBM2 attachment to the host. Electron microscopy single particle reconstruction of the J‐1 virion baseplate revealed that CBM2 is projected at the periphery of Dit to optimally bind the CWPS receptor. Taken together, these results identify J‐1 evolved Dit as the phage RBP.  相似文献   

17.
Summary The host-controlled K restriction of unmodified phage was 10-100-fold alleviated in the wild-type strain E. coli K12, carrying plasmid pKM101 of incompability group N. pKM101-mediated release of K restriction was also observed in lexA -, recA -, and recB - strains of E. coli K12. By restriction mapping Tn5 insertions in pKM101, which reduced pKM101-mediated alleviation of restriction, were shown to be located within the BglIIB fragment approximately 11 kb anticlockwise from the RI site of pKM101. We have termed the gene(s) promoting the alleviation of K restriction of phage ard (alleviation of restriction of DNA). It was shown (1) that ard function affected only the EcoK restriction system and not the EcoB, EcoRI, EcoRIII, or EcoPI system, (2) ard gene(s) did not mediate EcoK type modification of DNA and did not increase the modification activity of the EcoK system in a way similar to that observed with gene ral of bacteriophage .  相似文献   

18.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

19.
20.
Using DNA from L cells which expressed high levels of the CD7 (Leu-9 or HuLy-m2) antigen obtained after two cycles of transfection, a genomic library was constructed in the lambda phage Charon 4A. Recombinant clones containing the gene coding for this antigen were identified by first screening the library with both the HSVtk gene and a probe detecting the human repetitive (Alu) sequences. DNA from 10 tk+ and 12 Alu+ recombinant clones was used to transfect L cells which were analyzed for the cell-surface expression of CD7 either early (48–72 h posttransfection) or later when hypoxanthine aminopterin thymidine-resistant colonies were obtained. Transfection with either Alu+ or tk+ recombinant phages led to transient early expression of CD7, and stable CD7+ transfectants were also established. Thus the CD7 gene has been isolated in a number of clones in association with either the Alu repetitive sequence or with the HSV-tk gene; the insert size in one of the genomic clones was 13.5 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号