首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The physiological conditions and molecular interactions that control phage production have been studied in only a few families of temperate phages. We investigated the mechanisms that regulate activation of lytic development in lysogens of coliphage N15, a prophage that is not integrated into the host chromosome but exists as a linear plasmid with covalently closed ends. We identified the N15 antirepressor gene, antC, and showed that its product binds to and acts against the main phage repressor, CB. LexA binds to and represses the promoter of antC. Mitomycin C-stimulated N15 induction required RecA-dependent autocleavage of LexA and expression of AntC protein. Thus, a cellular repressor whose activity is regulated by DNA damage controls N15 prophage induction.  相似文献   

2.
Cryptic plasmid pRK2 of the strain Escherichia coli W (ATCC 9637), an ancestor of production strains for penicillin G acylase, was sequenced and characterized. Based on the data on replication region and origin (ori sequence AAC, 924-926nt), the plasmid was classified as ColE1-like plasmid. DNA sequence analysis revealed five orfs hypothetical products of which shared a significant sequence similarity with putative proteins encoded by DNA of plasmid pColE1. orf1 codes for protein Rom involved in the control of plasmid replication, orfs 2-5 code for putative mobilization proteins (Mob A-D) that show a high level of similarity with the ones encoded by DNA of plasmids pColE1 and pLG13 (E. coli), pECL18 and pEC01 (Enterobacter cloacae), pSFD10 (Salmonella choleraesuis), and pScol7 (Shigella sonnei). Recombinant plasmids pRS11 (4.91kbp), pRS12 (4.91kbp), pRS2 (2.996kbp), and pRS3 (2.623kbp) that bear the Spectinomycin resistance determinant (Spc(R)) were prepared on the basis of nucleotide sequence of pRK2. These constructs are stably maintained in the population of E. coli cells grown in the absence of the selection pressure for 63 generations. The copy number of Spc(R) constructs in E. coli host grown in antibiotic-free LB medium ranges from 25 to 40 molecules per chromosomal equivalent.  相似文献   

3.
N15 is the only bacteriophage of Escherichia coli known to lysogenize as a linear plasmid. Clear-plaque mutations lie in at least two regions of the 46-kb genome. We have cloned, sequenced, and characterized the primary immunity region, immB. This region contains a gene, cB, whose product shows homology to lambdoid phage repressors. The cB3 mutation confers thermoinducibility on N15 lysogens, consistent with CB being the primary repressor of N15. Downstream of cB lies the locus of N15 plasmid replication. Upstream of cB lies an operon predicted to encode two products: one homologous to the late repressor of P22 (Cro), the other homologous to the late antiterminator of phi 82 (Q). The Q-like protein is essential for phage development. We show that CB protein regulates the expression of genes that flank the cB gene by binding to DNA at symmetric 16-bp sites. Three sites are clustered upstream of cB and overlap a predicted promoter of the cro and Q-like genes as well as two predicted promoters of cB itself. Two sites downstream of cB overlap a predicted promoter of a plasmid replication gene, repA, consistent with the higher copy number of the mutant, N15cB3. The leader region of repA contains terminators in both orientations and a putative promoter. The organization of these regulatory elements suggests that N15 plasmid replication is controlled not only by CB but also by an antisense RNA and by a balance between termination and antitermination.  相似文献   

4.
5.
6.
A new cryptic plasmid from a multi-resistant, multi-plasmid clinical strain of Escherichia coli has been isolated. The sequence of the 4072-base-pair pIGWZ12 (GenBank Accession No. DQ311641) was determined and analyzed. Two open-reading frames that code for proteins involved in plasmid mobilization and initiation of replication were identified. The putative origin of replication possesses all characteristic features of the theta mechanism for replicating plasmids. pIGWZ12 is stably maintained without selective pressure in bacterial cultures (for up to 80 generations), making it a good candidate for engineering a new cloning vector.  相似文献   

7.
Ravin NV 《Plasmid》2011,65(2):102-109
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.  相似文献   

8.
As a necessary first step in the use of heteronuclear correlated spectra to obtain high resolution solution structures of the protein, assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin (Mr 12,000) uniformly labeled with 15N has been performed. The 15N chemical shifts of backbone amide nitrogen atoms have been determined for both oxidation states of thioredoxin using 15N-1H correlated and two-dimensional heteronuclear single-quantum coherence (HSQC) TOCSY and NOESY spectra. The backbone assignments are complete, except for the proline imide nitrogen resonances and include Gly33, whose amide proton resonance is difficult to observe in homonuclear 1H spectra. The differences in the 15N chemical shift between oxidized and reduced thioredoxin, which occur mainly in the vicinity of the two active site cysteines, including residues distant in the amino acid sequence which form a hydrophobic surface close to the active site, are consistent with the differences observed for proton chemical shifts in earlier work on thioredoxin.  相似文献   

9.
Summary Strains of E. coli JM103 harboring recombinant pUC8 plasmids were found to exhibit severe segregational instability in the absence of antibiotic selection. This was reversed by retransformation into fresh JM103. pUC8 was considerably more stable than its recombinant derivatives.  相似文献   

10.
Escherichia coli cells were forced to mineralize or assimilate nitrogen in vitro by manipulating substrate carbon and nitrogen availability. When grown on an organic nitrogen source, E. coli cells released NH(4)(+) and were enriched in (15)N relative to the nitrogen source (1.6-3.1 per thousand). However, when cells were grown on an inorganic nitrogen source, the biomass was depleted (6.1-9.1 per thousand) relative to the source. By measuring (15)N enrichment of microorganisms relative to nitrogen pools, ecosystem ecologists may be able to determine if microorganisms are assimilating or mineralizing nitrogen.  相似文献   

11.
Escherichia coli tRNAs were labeled with stable isotope 15N in vivo. Three species of tRNA, tRNA(Glu), tRNA(Lys) and tRNA(Ile), were purified by an HPLC system and their NMR spectra were observed. In heteronuclear 1H-15N multiple or single quantum coherence (HMQC or HSQC) spectra, the crosspeaks corresponding to NH3 of U and NH1 of G can be distinguished clearly since their 15N chemical shifts are significantly different from each other. Thus, this combination of 15N-labeling and the proton detected heteronuclear experiments are useful for the signal assignment and the conformational analysis of tRNAs. Furthermore, C1'- selective 13C-labeling of nucleotides was examined in vivo in order to resolve the H1' signals of tRNAs. By using a newly constructed E. coli mutant strain, the isotopic enrichments of more than 90% at C1' and of less than 10% for other ribose carbons were achieved.  相似文献   

12.
A well-characterized protein phosphorelay mediates Escherichia coli chemotaxis towards the amino acid attractant aspartate. The protein CheY shuttles between flagellar motors and methyl-accepting chemoreceptor (MCP) complexes containing the linker CheW and the kinase CheA. CheA-CheY phosphotransfer generates phospho-CheY, CheY-P. Aspartate triggers smooth swim responses by inactivation of the CheA bound to the target MCP, Tar; but this mechanism alone cannot explain the observed response sensitivity. Here, we used behavioral analysis of mutants deleted for CheZ, a catalyst of CheY-P dephosphorylation, or the methyltransferase CheR and/or the methylesterase CheB to examine the roles of accelerated CheY-P dephosphorylation and MCP methylation in enhancement of the chemotactic response. The extreme motile bias of the mutants was adjusted towards wild-type values, while preserving much of the aspartate response sensitivity by expressing fragments of the MCP, Tsr, that either activate or inhibit CheA. We then measured responses to small jumps of aspartate, generated by flash photolysis of photo-labile precursors. The stimulus-response relation for Delta cheZ mutants overlapped that for the host strains. Delta cheZ excitation response times increased with stimulus size consistent with formation of an occluded CheA state. Thus, neither CheZ-dependent or independent increases in CheY-P dephosphorylation contribute to the excitation response. In Delta cheB Delta cheR or Delta cheR mutants, the dose for a half-maximal response, [Asp](50), was ca 10 microM; but was elevated to 100 microM in Delta cheB mutants. In addition, the stimulus-response relation for these mutants was linear, consistent with stoichiometric inactivation, in contrast to the non-linear relation for wild-type E. coli. These data suggest that response sensitivity is controlled by differential binding of CheR and/or CheB to distinct MCP signaling conformations.  相似文献   

13.
Chemotactic stimuli in bacteria are sensed by large sensory complexes, or receptor clusters, that consist of tens of thousands of proteins. Receptor clusters appear to play a key role in signal processing, but their structure remains poorly understood. Here we used fluorescent protein fusions to study in vivo formation of the cluster core, which consists of receptors, a kinase CheA and an assisting protein CheW. We show that receptors aggregate through their cytoplasmic domains even in the absence of other chemotaxis proteins. Clustering is further enhanced by the binding of CheW. Surprisingly, we observed that some fragments of CheA bind receptor clusters well in the absence of CheW, although the latter does assist the binding of full-length CheA. The resulting mode of receptor cluster formation is consistent with an experimentally observed flexible stoichiometry of chemosensory complexes and with assumptions of recently proposed computer models of signal processing in chemotaxis.  相似文献   

14.
Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the 15N isotope effect on Escherichia coli cultures that were grown in either unlabeled (14N) or 15N‐labeled media by LC‐ESI‐MS/MS‐based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between 14N and 15N‐labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between 14N and 15N‐labeled bacteria. Our data demonstrate for the first time that the introduction of the 15N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques.  相似文献   

15.
Chromosomes in eukaryotes are linear, whereas those of most, but not all, prokaryotes are circular. To explore the effects of possessing a linear genome on prokaryotic cells, we linearized the Escherichia coli genome using the lysogenic lambda-like phage N15. Linear genome E. coli were viable and their genome structure was stable. There were no appreciable differences between cells with linear or circular genomes in growth rates, cell and nucleoid morphologies, genome-wide gene expression (with a few exceptions), and DNA gyrase- and topoisomerase IV-dependent growth. However, under dif-defective conditions, only cells with a circular genome developed an abnormal phenotype. Microscopy indicated that the ends of the linear genome, but not the circular genome, were separated and located at each end of a new-born cell. When tos - the cis-element required for linearization - was inserted into different chromosomal sites, those strains with the genome termini that were more remote from dif showed greater growth deficiencies.  相似文献   

16.
The substrate specificity of the NADP-dependent isocitrate dehydrogenase of Escherichia coli was investigated by combining site-directed mutagenesis and utilization of alternative substrates. A comparison of the kinetics of the wild-type enzyme with 2R-malate reveals that the gamma-carboxylate of 2R,3S-isocitrate contributes a factor of 12,000,000 to enzyme performance. Analysis of kinetic data compiled for 10 enzymes and nine different substrates reveals that a factor of 1,650 can be ascribed to the hydrogen bond formed between S113 and the gamma-carboxylate of bound isocitrate, a factor of 150 to the negative charge of the gamma-carboxylate, and a factor of 50 for the gamma-methyl. These results are entirely consistent with X-ray structures of Michaelis complexes that show a hydrogen bond positions the gamma-carboxylate of isocitrate so that a salt bridge can form to the nicotinamide ring of NADP.  相似文献   

17.
Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by unfavorable base pairing. Nucleotide pool sanitization by Orf135 is important since organisms are continually subjected to potential damage by reactive oxygen species produced during respiration. It is known that the frequency of spontaneous and H2O2-induced mutations is two to threefold higher in the orf135 - strain compared with the wild-type. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, although they recognize various substrates and possess a variety of substrate binding pockets. We are interested in delineating the mechanism by which Orf135 recognizes oxidatively damaged nucleotides. To this end, we are investigating the tertiary structure of Orf135 and its interaction with substrate using NMR. Herein, we report on the 1H, 13C and 15N resonance assignments of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrate.  相似文献   

18.
19.
20.
Rhodanese catalyzes the sulfur-transfer reaction in which a sulfur atom is transferred from thiosulfate to cyanide by a double-displacement mechanism. During the reaction, a persulfide-intermediate form of rhodanese is generated by the reaction of a conserved active cysteine residue with thiosulfate. Escherichia coli GlpE is a prototype for the single-domain rhodanese superfamily. Though there are some studies on rhodaneses, the molecular mechanism of the catalytic activity of rhodaneses is still unclear. Herein, we report the resonance assignments of (1)H, (13)C and (15)N atoms of E. coli GlpE, which provides the basis for further structural, dynamic and functional studies of rhodaneses using NMR technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号