首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.

Background  

Rates of synonymous nucleotide substitutions are, in general, exceptionally low in plant mitochondrial genomes, several times lower than in chloroplast genomes, 10–20 times lower than in plant nuclear genomes, and 50–100 times lower than in many animal mitochondrial genomes. Several cases of moderate variation in mitochondrial substitution rates have been reported in plants, but these mostly involve correlated changes in chloroplast and/or nuclear substitution rates and are therefore thought to reflect whole-organism forces rather than ones impinging directly on the mitochondrial mutation rate. Only a single case of extensive, mitochondrial-specific rate changes has been described, in the angiosperm genus Plantago.  相似文献   

2.

Background  

The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea).  相似文献   

3.

Background  

Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications.  相似文献   

4.

Background  

The rate at which neutral (non-functional) bases undergo substitution is highly dependent on their location within a genome. However, it is not clear how fast these location-dependent rates change, or to what extent the substitution rate patterns are conserved between lineages. To address this question, which is critical not only for understanding the substitution process but also for evaluating phylogenetic footprinting algorithms, we examine ancestral repeats: a predominantly neutral dataset with a significantly higher genomic density than other datasets commonly used to study substitution rate variation. Using this repeat data, we measure the extent to which orthologous ancestral repeat sequences exhibit similar substitution patterns in separate mammalian lineages, allowing us to ascertain how well local substitution rates have been preserved across species.  相似文献   

5.

Background  

Divergence of two independently evolving sequences that originated from a common ancestor can be described by two parameters, the asymptotic level of divergence E and the rate r at which this level of divergence is approached. Constant negative selection impedes allele replacements and, therefore, is routinely assumed to decelerate sequence divergence. However, its impact on E and on r has not been formally investigated.  相似文献   

6.

Background  

It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.  相似文献   

7.
8.

Objective

Characterize intra-individual HIV-1 subtype B pol evolution in antiretroviral naive individuals.

Design

Longitudinal cohort study of individuals enrolled during primary infection.

Methods

Eligible individuals were antiretroviral naïve participants enrolled in the cohort from December 1997-December 2005 and having at least two blood samples available with the first one collected within a year of their estimated date of infection. Population-based pol sequences were generated from collected blood samples and analyzed for genetic divergence over time in respect to dual infection status, HLA, CD4 count and viral load.

Results

93 participants were observed for a median of 1.8 years (Mean = 2.2 years, SD = 1.9 years). All participants classified as mono-infected had less than 0.7% divergence between any two of their pol sequences using the Tamura-Nei model (TN93), while individuals with dual infection had up to 7.0% divergence. The global substitution rates (substitutions/nucleotide/year) for mono and dually infected individuals were significantly different (p<0.001); however, substitution rates were not associated with HLA haplotype, CD4 or viral load.

Conclusions

Even after a maximum of almost 9 years of follow-up, all mono-infected participants had less than 1% divergence between baseline and longitudinal sequences, while participants with dual infection had 10 times greater divergence. These data support the use of HIV-1 pol sequence data to evaluate transmission events, networks and HIV-1 dual infection.  相似文献   

9.

Background  

Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus.  相似文献   

10.

Background  

Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time.  相似文献   

11.

Background  

The genes for salivary androgen-binding protein (ABP) subunits have been evolving rapidly in ancestors of the house mouse Mus musculus, as evidenced both by recent and extensive gene duplication and by high ratios of nonsynonymous to synonymous nucleotide substitution rates. This makes ABP an appropriate model system with which to investigate how recent adaptive evolution of paralogous genes results in functional innovation (neofunctionalization).  相似文献   

12.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

13.

Background  

Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Δ11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Δ11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains.  相似文献   

14.

Background  

Phylogenies of rapidly evolving pathogens can be difficult to resolve because of the small number of substitutions that accumulate in the short times since divergence. To improve resolution of such phylogenies we propose using insertion and deletion (indel) information in addition to substitution information. We accomplish this through joint estimation of alignment and phylogeny in a Bayesian framework, drawing inference using Markov chain Monte Carlo. Joint estimation of alignment and phylogeny sidesteps biases that stem from conditioning on a single alignment by taking into account the ensemble of near-optimal alignments.  相似文献   

15.

Background  

Gene duplication has been a fundamental process in the evolution of eukaryotic genomes. After duplication one copy (or both) can undergo divergence in sequence, expression pattern, and function. Two divergent copies of the ribosomal protein S13 gene (rps13) of chloroplast origin are found in the nucleus of the rosids Arabidopsis, Gossypium, and Glycine. One encodes chloroplast-imported RPS13 (nucp rps13), while the other encodes mitochondria-imported RPS13 (numit rps13). The rps13 gene has been lost from mitochondrial DNA (mt rps13) of many rosids.  相似文献   

16.

Background  

MTML-msBayes uses hierarchical approximate Bayesian computation (HABC) under a coalescent model to infer temporal patterns of divergence and gene flow across codistributed taxon-pairs. Under a model of multiple codistributed taxa that diverge into taxon-pairs with subsequent gene flow or isolation, one can estimate hyper-parameters that quantify the mean and variability in divergence times or test models of migration and isolation. The software uses multi-locus DNA sequence data collected from multiple taxon-pairs and allows variation across taxa in demographic parameters as well as heterogeneity in DNA mutation rates across loci. The method also allows a flexible sampling scheme: different numbers of loci of varying length can be sampled from different taxon-pairs.  相似文献   

17.

Background  

The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them.  相似文献   

18.

Background  

The presence of prophages has been an important variable in genetic exchange and divergence in most bacteria. This study reports the determination of the genomic sequence ofSalmonellaphage ε34, a temperate bacteriophage that was important in the early study of prophages that modify their hosts' cell surface and is of a type (P22-like) that is common inSalmonellagenomes.  相似文献   

19.

Background  

Over the past two decades, there have been several approximate methods that adopt different mutation models and used for estimating nonsynonymous and synonymous substitution rates (Ka and Ks) based on protein-coding sequences across species or even different evolutionary lineages. Among them, MYN method (a Modified version of Yang-Nielsen method) considers three major dynamic features of evolving DNA sequences–bias in transition/transversion rate, nucleotide frequency, and unequal transitional substitution but leaves out another important feature: unequal substitution rates among different sites or nucleotide positions.  相似文献   

20.

Background  

Various expansions or contractions of inverted repeats (IRs) in chloroplast genomes led to fluxes in the IR-LSC (large single copy) junctions. Previous studies revealed that some monocot IRs contain a trnH-rps19 gene cluster, and it has been speculated that this may be an evidence of a duplication event prior to the divergence of monocot lineages. Therefore, we compared the organizations of genes flanking two IR-LSC junctions in 123 angiosperm representatives to uncover the evolutionary dynamics of IR-LSC junctions in basal angiosperms and monocots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号