首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Pamvotis is a moderately sized (22 km2) shallow (z avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4 +=0.25 mg N l-1, NO3 =0.56 mg N l-1). FRP and NH4 + levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.  相似文献   

2.
While rare globally, blooms of the toxic cyanobacteria Nodularia spumigena are a recurring problem in a few estuaries, such as the Baltic Sea and several southern Australian estuaries. Here, we document recurring Nodularia spumigena Mertens blooms in the Gippsland Lakes, S.E. Australia; a temperate lagoon system with episodic, winter-spring dominated catchment inflows. Physico-chemical conditions exerted a strong influence over bloom development, with blooms consistently occurring at surface water salinities between 9 and 20 (average?=?15), inorganic nitrogen concentrations <0.4?μM, and inorganic nitrogen to reactive phosphorus ratios <5. There was a positive correlation between average annual chlorophyll a and total phosphorus (TP) load in years when there was no Nodularia bloom, but this relationship broke down in Nodularia bloom years, even though there was a strong correlation between in-lake TP and chlorophyll a during these years; this highlights the importance of internal sources of phosphorus to bloom development. Large catchment derived nitrate and nitrite (NOx) inputs following wildfires and floods in 2007, led to high concentrations of NOx within the surface waters of the Gippsland Lakes through the second half of 2007 and the start of 2008. We hypothesise that these high NOx concentrations were a key factor leading to an unprecedented Synechococcus sp. bloom that developed in the austral summer of 2007–2008, despite conditions that would otherwise favour a Nodularia bloom.  相似文献   

3.
The variability in the phytoplankton communities of the Myall Lakes, a series of four interconnected coastal lakes on the lower north coast of New South Wales, was studied between 1999 and 2002. There was considerable spatial variability across the lake system. Bombah Broadwater experienced blooms of Anabaena in 1999 and early 2000, but these were replaced from late 2000 onwards by Chroococcus and a variety of eukaryotic taxa, particularly flagellates and diatoms. In comparison, the phytoplankton community of Myall Lake was dominated for much of the study period by Chroococcus, Merismopedia and chlorophyte taxa. The sites located midway between these two main lakes represent an ecotone, with elements of the phytoplanktonic flora of both main lakes being present. Changes in phytoplankton community composition in Bombah Broadwater occurred fairly frequently. In contrast, the phytoplankton community in Myall Lake changed little during the course of the study and can be considered as being at long-term equilibrium. The reasons for this lie in the morphology and hydrology of the lake system, which in turn create gradients in a number of physico-chemical water quality attributes. Bombah Broadwater is influenced by episodic and stochastic freshwater inflows from the upper Myall River catchment, and in times of drought by saline marine incursions via the lower Myall River. Myall Lake however represents a cul-de-sac, with only a small hydraulic connection to the remainder of the lake system. As it has little input from its small catchment, the limnological conditions within this lake remain relatively constant for long periods of time. Although no patterns of seasonal succession were discernable in any of the lakes, some longer-term (annual) changes did occur, and certain taxa displayed enhanced growth in summer. Salinity was found to be an important factor in determining phytoplankton community composition and abundance. Canonical Correspondence Analysis of phytoplankton and environmental data for all sites combined, showed ammonia, total nitrogen and salinity (measured as electrical conductivity) to have the most influence on the phytoplankton community composition and abundance. Anabaena growth was positively related to ammonia concentration and negatively related to conductivity.  相似文献   

4.
Analysis of ten- and four-year datasets for the large, shallow, subtropical, and eutrophic Lakes Okeechobee (USA) and Taihu (China), respectively, suggest that resource-ratio explanations for cyanobacteria dominance may not apply to these two lakes. Datasets were examined to identify relationships between nutrient ratios [total nitrogen (TN):total phosphorus (TP) and ammonium (NH4 +):oxidized N (NO x )] and phytoplankton community structure (as proportions of cyanobacteria and diatoms to total phytoplankton biomass). Datasets were pooled by sampling month, averaged lake-wide, and analyzed with linear regression. In Okeechobee, the cyanobacteria proportion increased and the diatom proportion decreased with increasing TN:TP. In Taihu, cyanobacteria decreased with increasing TN:TP, but the opposite trend observed for diatoms was marginally significant. Okeechobee cyanobacteria increased and diatoms decreased with increasing NH4 +:NO x , but no significant relationships between phytoplankton and NH4 +:NO x were observed in Taihu. Both lakes had significant relationships between phytoplankton community structure and total nutrients, but these relationships were the opposite of those expected. Relationships between phytoplankton community structure and water quality parameters from the previous month resulted in improved relationships, suggesting a predictive capability. Statistical analysis of the entire datasets (not pooled) supported these and additional relationships with other parameters, including temperature and water clarity.  相似文献   

5.
In highly eutrophic ponds, buoyancy of the gas-vacuolate blue-green alga Anabaenopsis Elenkinii (Miller) was regulated by complex interactions between chemical and physical parameters, as well as by biological interactions between various trophic levels. Algal buoyancy and surface bloom formation were enhanced markedly by decreased light intensity, and to a lesser extent by decreased CO2 availability and increased availability of inorganic nitrogen. In the absence of dense populations of large-bodied Cladocera, early season blooms of diatoms and green algae reduced light availability in the ponds thus creating conditions favorable for increased buoyancy and bloom formation by A. Elenkinii. The appearance of blue-green algal blooms could be prevented by a reduced density of planktivorous fish, which allowed development of dense cladoceran populations. The cladocerans limited the growth of precursory blooms of diatoms and green algae, and given the resulting clear-water conditions, buoyancy of A. Elenkinii was reduced, and blue-green algal blooms never appeared.  相似文献   

6.
1. We explored patterns of limnological variables (physical, chemical and biological) with relation to landscape position (expressed as lake order) in 86 study lakes located on shield bedrock in south‐central Ontario, Canada. 2. Using anova s with lake order as the categorical variable, landscape position explained significant amounts of variation in major ion chemistry, physical and catchment characteristics, hypolimnetic oxygen, and community composition in algal (diatom, chrysophyte) and invertebrate (chironomid) assemblages preserved in surficial sediments. Several nutrient variables (TP, total phosphorus and TN, total nitrogen) and dissolved organic carbon did not have significant relationships with lake order. 3. The strongest relationships with lake order (as a fraction of variation explained in anova s) included silica concentrations (r2 = 0.40) and SO4 (r2 = 0.29) concentrations, surface area (r2 = 0.50) and hypolimnetic oxygen (r2 = 0.29). 4. Bedrock geology (carbonate metasedimentary versus non‐carbonate bedrock) had strong influences on spatial gradients of pH and major ion chemistry. It was difficult to separate geological influences from spatial influences on limnological variables in this study, as drainage patterns in the region are highly influenced by surface features of underlying geological formations because of the very thin glacial till or exposed bedrock that exists in most catchments. 5. Patterns of limnological variables indicated that low‐order, headwater lakes had the lowest concentrations of major ions, and, from algal inferences of pH change, had been most susceptible to acidic deposition. High‐order, downstream lakes were larger and deeper, and had higher concentrations of hypolimnetic oxygen, indicating that optimal lake trout habitat was primarily located in high‐order lakes. 6. Variance partitioning analyses indicated that lake order as a metric of landscape position explained comparable portions of community variation in algal and invertebrate assemblages compared with geographic position (latitude, longitude) and Cartesian coordinate position (e.g. x, y, x2, y2, etc.) metrics. Lake order explained more community variation in chironomid assemblages compared with other landscape metrics, possibly because of the strong relationships between lake order and lake morphometry variables.  相似文献   

7.
《Harmful algae》2009,8(1):175-181
While increased nutrient concentrations and eutrophication are recognized to be among the causative factors contributing to algal blooms, including harmful algal blooms (HABs), relationships between nutrient fluxes and specific blooms are often not well defined or understood. In an attempt to better decipher these relationships, we employed in situ nutrient monitors to collect time-series data to document variability ranging from hourly to monthly, including rain events and the resulting response of phytoplankton biomass. Multiple deployments are reported here, all conducted in tributaries of Chesapeake Bay. The suite of nutrients that were monitored varied with deployment; examples given here include nitrate + nitrite (NO3 + NO2), ammonium (NH4+), phosphate (PO43−), and urea. Common features in the data included highly varying concentrations on time-scales of a few hours related to tidal oscillations, and longer-term responses on the scale of days related to rainfall events. Increases following rainfall events for all nutrients generally tended to be many fold, up to an order of magnitude, higher than pre-rainfall concentrations. However, the time scale of response to rainfall for individual nutrients varied. Ephemeral increases in PO43− and urea typically were contemporaneous with rain events, and were also followed by longer-term sustained increases relative to pre-rainfall levels. Increases in NO3 + NO2 and NH4+ lagged rainfall events by a period of several days and generally lasted for several days. These dynamics generally would be missed by traditional manual sampling. Algal responses tended to follow the increases in nitrogen, underscoring nitrogen limitation in these systems even when ambient concentrations were not depleted.  相似文献   

8.
Ejsmont-Karabin  J.  Gulati  R. D.  Rooth  J. 《Hydrobiologia》1989,(1):29-34
Visual observations and experiments on food preference of Euchlanis dilatata lucksiana show that this euchlanid can feed on blue-green algae not consumed by the most planktonic animals. Nevertheless, even in lakes with blooms of blue-green algae, E. d. lucksiana occur infrequently and generally in low numbers. The paper is an attempt to explore into the causes for the rare occurrence of Euchlanis in the pelagial. A comparison of threshold food concentrations calculated from N and P excretion rates (Gulati et al., this volume) with the concentrations of seston in the Lake Loosdrecht shows that the latter were several times higher during study period in 1984. This implies that the food requirements of Euchlanis were always satisfied in this lake. The time needed for the consumption of the total food fraction in a liter of lake water by a concentration of 50 Euchlanis l–1 was also calculated. This time varied from 70 to 200 days, so a Euchlanis population even at its maximum density will not cause major changes in blue-green algae biomass by grazing. Thus, food limitation cannot be viewed as a factor controlling the Euchlanis densities in Loosdrecht Lakes. There is some evidence that Euchlanis is heavily predated in Loosdrecht Lakes, losses in its biomass accounting for 126% of the production. Adaptation of this species to the littoral zone, as expressed by the deposition of eggs on plants, can also limit the occurrence of the lucksiana form to water bodies with blooms of blue-green algae.  相似文献   

9.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

10.
Harmful algal blooms (HABs) resulting in red discoloration of coastal waters in Sepanggar Bay, off Kota Kinabalu, Sabah, East Malaysia, were first observed in January 2005. The species responsible for the bloom, which was identified as Cochlodinium polykrikoides, coincided with fish mortalities in cage-cultures. Determinations of cell density between January 2005 and June 2006 showed two peaks that occurred in March–June 2005 and June 2006. Cell abundance reached a maximum value of 6 × 106 cells L−1 at the fish cage sampling station where the water quality was characterized by high NO3–N and PO4–P concentrations. These blooms persisted into August 2005, were not detected during the north–east monsoon season and occurred again in May 2006. Favorable temperature, salinity and nutrient concentrations, which were similar to those associated with other C. polykrikoides blooms in the Asia Pacific region, likely promoted the growth of this species. Identification of C. polykrikoides as the causative organism was based on light and scanning microscopy, and confirmed by partial 18S ribosomal DNA sequences of two strains isolated during the bloom event (GenBank accession numbers DQ915169 and DQ915170).  相似文献   

11.
Decreased salinity effects in Lake Kinneret (Israel)   总被引:1,自引:0,他引:1  
Kinneret is the only freshwater lake in Israel. It currently supplies about 30% of national water demands. Most pumped water is for drinking, and water quality is of major concern. During 1970–1987 temporal changes were observed in the lake ecosystem: decrease of salinity, decrease of total N (TN) and increase of total P (TP) mass contents, decline of TN/TP ratio, increase of phytoplankton biomass and increase of algal photosynthetic specific activity. It is suggested that because of decrease in salinity carbonic anhydrase activities in algal cells and nitrifying bacteria were enhanced. The increase of NO3 flux through nitrification consequently enhanced denitrification and nitrogen losses in lake waters. These increased N losses together with P increase, as reflected by the decline of TN/TP ratio might be a slight shift from the present both P and N deficiencies to a higher level of N limitation in the Kinneret ecosystem. This This may cause changes in phytoplankton community structure possibly without changing primary production levels but deteriorate water quality.  相似文献   

12.
The effects of blue-green algal blooms on an emergent reed plant,Phragmites australis (Cav.) Trin. ex Steud., were investigated in a eutrophic lake in central Japan. The plants showed conspicuous withering of bottom leaves in spring of 1982, after an early occurrence of the bloom. In June, the plants in the area of algal infestation had about half the shoot length and dry weight of normalP. australis without the algal infestation. Reductions in water transparency, dissolved oxygen in bottom water and redox potentials of surface soil corresponded to the presence of algal bloom and plant damage.  相似文献   

13.
Nitrogen in the Pyrenean lakes (Spain)   总被引:1,自引:0,他引:1  
Lakes in the Pyrenees show a broad variability in nitrogen content and in the distribution of its different oxidation forms, which has no direct relation with any single physiographical, chemical or trophic feature of the lakes. Concentration of bound nitrogen in rain is low compared with other European mountains, but the annual load lies in the middle range. Seasonal and local variation in the composition of rainwater mainly depends on the geographical origin of the storms. Catchment and in-lake processes introduce further variability: NH4 +, which is at similar concentration to NO3 - in the rain, is quickly oxidized or adsorbed in the catchment; aquatic macrophytes can either reduce mean NO3 - concentration in lake water (Ranunculo-Potametum) or greatly increase it in sediment pore water (Isoetes); NO2 - depends on pH; decomposition of particulate nitrogen in sediments changes with depth; lakes act as traps for dissolved inorganic nitrogen; changes in dissolved organic nitrogen suggest high microbial activities even in cold waters; melting period introduces most of the seasonal variability. Institute of High-Mountain Research, University of Barcelona  相似文献   

14.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

15.
The Broadwater of the Myall Lakes system is highly susceptible to cyanobacterial bloom formation after heavy rain events. During prolonged low flow periods, saline intrusion from the lower Myall River increases salinity levels and effectively controls some bloom forming algal taxa. To assess the effect of low-to-moderate increases in salinity (up to 4 ppt) on phytoplankton chlorophyll a, cell abundance, diversity and assemblage structure, salinity enhancement experiments were conducted on Broadwater samples collected in June 2005 (salinity 1.5 ppt), October 2005 (4 ppt) and January 2006 (12 ppt). Natural phytoplankton assemblages were incubated in the laboratory for 10 days, under different treatments of salinity (no addition, +2 ppt, + 4 ppt) and nutrient conditions (no addition, excess N+P). The greatest impact of salinity enhancement in N+P enriched samples was observed in June (1.5–5.5 ppt); chlorophyll a was significantly reduced in samples with the highest salinity treatment, and the taxon most negatively affected by an elevation in salinity to 5.5 ppt was Anabaena circinalis. Taxonomic richness and diversity (Shannon–Wiener index) were unexpectedly significantly higher at 5.5 ppt than at 1.5 ppt. This result, in part, explains the observed significant differences in phytoplankton assemblage structure over this salinity range. In October, the main effect of elevating salinity levels from 4 ppt to 8 ppt was a reduction in the abundance of chlorophytes, particularly Scenedesmus. Phytoplankton samples that were collected when the lake salinity level was 12 ppt were little affected by salinity increases of 2 ppt and 4 ppt, most likely because field samples were already relatively high in salt content. We suggest that further investigations focus on phytoplankton responses to salinity under a range of nutrient regimes that are common to coastal lakes.  相似文献   

16.
Excessive nutrient loads resulted in cascading trophic effects and ecosystem responses. Aims of this study were to determine if the thresholds in nutrient gradient related to phytoplankton community composition could be identified in eutrophic lake, and further to analyze the change of phytoplankton assemblage along the nutrient concentration based on Threshold Indicator Taxa ANalysis (TITAN). The results presented the significant community thresholds estimate for negative taxa declining at 1.650 mg/L TN and 131.5 μg/L TP, as well as simultaneously increasing for positive taxa at 1.665 mg/L TN and 151.5 μg/L TP along nutrient enrichment gradient. However, there was unremarkable change point determined for TN:TP ratios in Lake Dianchi. Elevated TN and TP altered the phytoplankton assemblage, even may induce the fade of algal blooms across the threshold in the hypertrophic lake. The findings could provide implications for deeply deciphering abrupt transitions for phytoplankton assemblage and developing nutrient tactics to protect the lake ecosystems.  相似文献   

17.
太湖水华程度及其生态环境因子的时空分布特征   总被引:2,自引:0,他引:2  
张艳会  李伟峰  陈求稳 《生态学报》2016,36(14):4337-4345
湖泊水华是全世界面临的严重生态环境问题之一,对人类和生态系统健康都有重大影响。由于湖泊水华受流域面源、点源污染、气候、水文因子以及湖泊生态系统自身特征等众多因素影响,水华是否爆发、其严重程度及时空分布特征呈现明显的复杂性。以我国太湖为研究区域,基于近年的水华及水环境的监测数据,用自组织特征映射神经网络对太湖不同监测点的水华程度进行了自动聚类分析。结果表明,太湖水华程度呈现为明显的无水华、轻度、中度和重度水华4类。不同程度水华的叶绿素a、水温、COD_(Mn)、营养盐、浮游植物生物量以及藻种(蓝藻、绿藻、硅藻)结构的时空差异显著,不同变量间的关系复杂,有助于深入认识太湖近年水华发生的时空变异特性。  相似文献   

18.
The process-based simulation library SALMO-OO represents an object-oriented implementation of mass balance equations for pelagic food webs consisting of diatoms, green algae, blue-green algae and cladocerans, as well as nutrient cycles based on PO4–P, NO3–N, DO and detritus in lakes. It gains its structural flexibility from alternative process representations for algal growth and grazing, and zooplankton growth and mortality.Generic model structures of SALMO-OO were determined for three lake categories classified by circulation types reflecting the local climate and morphometry of lakes, and by trophic states reflecting community structures and habitat properties of lakes.Data of six lakes belonging to either of the three lake categories were used to validate the lake category specific structures of SALMO-OO.The study has demonstrated that: (1) JAVA suits well for object-oriented implementations of ecological simulation libraries, (2) object-oriented simulation libraries facilitate the identification of generic model structures for ecosystem categories.  相似文献   

19.
C. H. D Magadza 《Hydrobiologia》1994,272(1-3):277-292
Zooplankton was a useful tool in evaluation of eutrophication control in Lake Chivero, a tropical man made impoundment. Principal component analysis revealed both spatial and temporal changes in zooplankton community structure which were related to nutrient inflows as well as changes in nutrient content of the lake. Studies on filtration rates of different algae by Bosmina longirostris and Daphnia lumholtzi demonstrated that the response of zooplankton to eutrophication was related to their inability to utilize colonial algal species that develop in a nutrient rich-environment.  相似文献   

20.
Chang K. Lin 《Hydrobiologia》1972,39(3):321-334
Summary An investigation of phytoplankton in Astotin Lake was made between mid-May of 1966 and September of 1967 with particular attention to the ice-free seasons. Astotin Lake is a typical, small eutrophic, kettle lake with shallow, landlocked, hard water in the Canadian prairies. High concentrations of nutrients supported heavy blooms of blue-green algae throughout the summer. The spring communities were dominated by Asterionella formosa in 1966 and by Cyclotella meneghiniana in 1967. Oxygen depletion under ice-cover probably explains the failure of an Asterionella formosa population to appear in 1967. Deficiency of silica and a rise in water temperature apparently caused the decline of the spring pulses of diatoms. Relatively high summer water temperature favoured the blue-green algal blooms and resulted in a high concentration of organic matter. The decomposition of dead Anabaena cells played an important part in the development of subsequent waterblooms, i.e., Microcystis aeruginosa and Aphanizomenon flos-aquae. The sequence of waterblooms of those species was closely related to the change in water temperature. A flos-aquae became incompatible with M. aeruginosa when the temperature fluctuated in a wide range. Most of the non-blue green algae apparently were inhibited by these cyanophyte blooms. Great species diversity appeared intermittently between blooms and a few species of the Scenedesmaceae and the Oocystaceae were relatively compatible to these blooms.Part of a thesis submitted to the Department of Botany, University of Alberta, Edmondton, Alberta, in partial fulfillment of the requirements for the M. Sc. degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号