首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viruses and other nucleoprotein complexes are inactivated on exposure to white light in the presence of acridine and related dyes. The mechanism is thought to involve generation of singlet oxygen or related species, but the actual molecular targets of the inactivating event have not been well defined. We have re-examined the mechanism of dye-sensitized photoinactivation taking advantage of the well characterized bacteriophage P22. Though the inactivated phage absorb to their host cells, the cells are not killed and genetic markers cannot be rescued from the inactivated phage. These observations indicate that the chromosome is not injected into the host cell. However, the DNA of the damaged particles shows no evidence of double-stranded breaks or crosslinking.The DNA injection process of P22 requires three particle-associated proteins, the products of genes 7, 16 and 20. Gp16, which can act in trans during injection, is inactivated in the killed particles. Sodium dodecyl sulfate/polyacrylamide gel analysis reveals that gp16, gp7 and gp20 are progressively covalently damaged during photoinactivation. However, this damage does not occur in particles lacking DNA, indicating that it is DNA-mediated. Similar findings were obtained with acridine orange, acridine yellow, proflavin and acriflavin.These results indicate that the actual targets for inactivation are the DNA injection proteins, and that the lethal events represent absorption of photons by acridine molecules stacked in a region of DNA closely associated with the injection proteins.  相似文献   

2.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

3.
Summary Infectious DNA from phage T1 was inactivated by UV-light (2,537 Å). No effect of irradiation on the kinetics of the assay in a spheroplast system could be observed. UV-damaged molecules compete with unirradiated DNA for the infection. Infectious T1-DNA is subject to host-cell reactivation of UV-damage, the amount of which depends on the physiological conditions of the spheroplasts. Though UV-radiosensitivity of T1 particles is not influenced by the presence of the radical scavenging compound cysteamine, infectious DNA can be protected effectively by this chemical (0.01M) against UV-damage when HCR-negative spheroplasts are used for the assay. Incorporation of 5-bromouracil radiosensitizes infectious T1-DNA in the presence and absence of HCR. This effect can be eliminated when the DNA is irradiated in the presence of cysteamine. The mechanism of radioprotection is discussed.  相似文献   

4.
Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.  相似文献   

5.
It has long been accepted that radiation-induced genetic effects require that DNA be hit and damaged directly by the radiation. Recently, evidence has accumulated that in cell populations exposed to low doses of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. The end points observed include chromosome aberrations, mutations and gene expression. The development of a fast single-cell microbeam now makes it possible to expose a precisely known proportion of cells in a population to exactly defined numbers of alpha particles, and to assay for oncogenic transformation. The single-cell microbeam delivered no, one, two, four or eight alpha particles through the nuclei of all or just 10% of C3H 10T1/2 cells. We show that (a) more cells can be inactivated than were actually traversed by alpha particles and (b) when 10% of the cells on a dish are exposed to alpha particles, the resulting frequency of induced transformation is not less than that observed when every cell on the dish is exposed to the same number of alpha particles. These observations constitute evidence suggesting a bystander effect, i.e., that unirradiated cells are responding to damage induced in irradiated cells. This bystander effect in a biological system of relevance to carcinogenesis could have significant implications for risk estimation for low-dose radiation.  相似文献   

6.
Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.  相似文献   

7.
The addition of 0.2 m l-arginine to various T-even bacteriophage preparations inactivated the virus preparations irreversibly. The virus particles were even more sensitive to added d-arginine and l-homoarginine than to l-arginine but were unaffected by arginine analogues with either an altered carboxyl group or guanidyl group. Treatment of phage T2H with 2,3-butanedione, a reagent which specifically reacts with the guanidyl portion of arginine residues, resulted in the apparent in-activation of most of the virus particles. However, after incubation of the treated particles at pH 7.5 at 37 C for 1 hr in the absence of butanedione, the original virus titer almost completely returned. The reactivation was completely inhibited by the presence of 0.2 m d-arginine. It appeared that the virus protein coat was sufficiently plastic so that the initial conformational change resulting from the alteration of an arginine residue (to possibly an ornithine residue) was at least partially reversible and that the virus tail proteins then refolded to produce a stable and active virus particle. These reactivated virus particles were not sensitive to inactivation by d-arginine but could now be rapidly inactivated by l-ornithine. Virus particles inactivated by arginine have altered tail structures. They have contracted tail sheaths still attached to tail plates and still contain tail cores. These properties of virus particles indicate that there is a free carboxyl group and a guanidyl group spatially equivalent to an arginine residue on one component of the virus tail which bind reversibly by means of polar linkages to another tail component. These bonds maintain the integrity of the virus tail. Added arginine appears to compete with this endogenous viral arginine for the binding sites and then to favor an irreversible conformational change.  相似文献   

8.
Chelating Agent Shock of Bacteriophage T5   总被引:1,自引:1,他引:0       下载免费PDF全文
When two strains of phage T5 (heat-susceptible form T5st(+) and its heat-resistant mutant T5st) were placed in solutions containing various high concentrations of chelating agents (sodium citrate and ethylenediaminetetraacetic acid) at room temperature, they could be effectively inactivated by rapid dilution in distilled water of relatively low temperatures (2 to 37 C). This phenomenon has been termed "chelating agent shock" (CAS). The susceptibility of phage T5 to CAS increased with an increase in the concentration of chelating agents and with an increase in temperature of the water used for rapid dilution. Under any given condition, T5st(+) was much more sensitive to CAS than was T5st. Phage T5 was protected against inactivation by the addition of monovalent or divalent metal salts, but not by the addition of nonionic solutes, to the shocking water prior to CAS treatment. This finding is compatible with the view that cations combined with the phage protein are removed by the chelating agent, although no metal ion has been identified in the phage protein. Alternatively, since the chelating agents used are polyanions, they may bind relatively tightly to the protein subunits in the head of T5, thereby distorting the structure of the phage head. Rapid dilution of these distorted particles could lead to loss of phage DNA. No evidence for recovery of phage activity could be obtained by the addition of metal salts to the inactivated phage after CAS. The morphological properties of phage inactivated by CAS are similar to those of heat-inactivated T5 phage. Electron micrographs showed that most of the phage particles consisted of empty head membranes; some of the particles had lost their tails. Both heritable and nonheritable resistance to heat was accompanied by resistance to CAS in phage T5. The sensitive element detected by each test seemed to be the same.  相似文献   

9.
Intranasal immunization with inactivated influenza virus vaccine can provide protective immunity, whereas many other antigens are less effective when used for mucosal immunization. To determine whether influenza virus could enhance immune responses to an antigen coadministered to a mucosal surface, we studied the intranasal immunization of mice with a mixture of simian-human immunodeficiency virus (SHIV) virus-like particles (VLPs) and inactivated influenza virus. Compared to mice immunized with SHIV VLPs alone, mice coimmunized with SHIV VLPs and inactivated influenza virus showed significant increases in serum immunoglobulin G (IgG) and mucosal IgA antibodies specific to the human immunodeficiency virus envelope protein, neutralizing activities, numbers of gamma interferon- and interleukin 4-secreting lymphocytes, and cytotoxic-T-lymphocyte activities. The levels of enhancement of immune response by coimmunization with inactivated influenza virus were equivalent to those induced by inclusion of immunostimulatory CpG oligodeoxynucleotides (CpG DNA). We also observed that SHIV VLPs bind to influenza virus virions, forming mixed aggregates. These results indicate that inactivated influenza virus can play a role as a mucosal adjuvant to coadministered antigens.  相似文献   

10.
Characterization of bacteriophage SPP1 transducing particles   总被引:2,自引:0,他引:2  
Bacillus subtilis lysates produced by virulent bacteriophage SPP1 retained their transducing ability upon purification from contaminating PBSX particles. The buoyant density in CsC1 of the transducing activity was indistinguishable from that of the SPP1 plaque-forming units and the sedimentation behaviour in sucrose gradients of purified transducing particles was the same as that of SPP1 phage particles. Further, high concentrations of anti-SPP1 serum inactivated transducing particles and SPPl plaque-forming units at the same rate. The transduction process was resistant to DNAase treatment, but was enhanced by temperatures that did not allow transformation. It was concluded that particles of the size, shape, density and serum-sensitivity characteristic of SPP1, but carrying bacterial DNA, are vectors in a true transduction process. Cell survival upon SPP1 infection is discussed.  相似文献   

11.
SYNOPSIS. The killer strains of Euplotes minuta contain cytoplasmic epsilon particles absent in sensitive strains. The toxic principle of killers is associated with large particles which sediment readily in the centrifuge and may be identical with epsilon. Killing particles are inactivated by heat, certain proteolytic enzymes, and lysis with the French press.  相似文献   

12.
Endogenous DNA synthesis was studied in isolated core particles of avian myeloblastosis virus. It was found that cores contained an enzymatic activity which rapidly converted the added nucleoside triphosphates to diphosphates (but not further) at 0 degrees C, thus inhibiting DNA synthesis. This triphosphatase probably originates from the viral membranes. In the cores the enzyme is completely inactivated by low concentrations (0.02%) of Nonident P-40. Also, the enzyme is very thermolabile and denatures rapidly at 38 degrees C.  相似文献   

13.
The titre of infectious phage particles in phage lysates stored at +4°C gradually fell. The inactivated particles retained their capacity for adsorption to male cell receptors, however, competing for the latter with infectious particles and thus protecting the cells from infection. The upper limit of the infected cell fraction in a F+ population fell abruptly with aging of the lysate even when the input of p.f.u. was kept constant. F2 particles inactivated by u.v. radiation behaved similarly to particles inactivated spontaneously during storage of the lysate at +4°C.  相似文献   

14.
The western grey kangaroo (Macropus fuliginosus) was found to be deficient for galactose-1 phosphate uridyl transferase (GPUT). This species could be used therefore for studies of gene therapy techniques. An improved GPUT assay procedure was developed. It was found that phage particles injected intravenously remain in the blood of kangaroos until the particles are removed by the reticuloendothelial system or, if this system is overloaded, the particles are inactivated by the immune system four days later. No effective transgenosis was detected of the bacterial gal operon contained in the phage used.  相似文献   

15.
1. Osmotic shock disrupts particles of phage T2 into material containing nearly all the phage sulfur in a form precipitable by antiphage serum, and capable of specific adsorption to bacteria. It releases into solution nearly all the phage DNA in a form not precipitable by antiserum and not adsorbable to bacteria. The sulfur-containing protein of the phage particle evidently makes up a membrane that protects the phage DNA from DNase, comprises the sole or principal antigenic material, and is responsible for attachment of the virus to bacteria. 2. Adsorption of T2 to heat-killed bacteria, and heating or alternate freezing and thawing of infected cells, sensitize the DNA of the adsorbed phage to DNase. These treatments have little or no sensitizing effect on unadsorbed phage. Neither heating nor freezing and thawing releases the phage DNA from infected cells, although other cell constituents can be extracted by these methods. These facts suggest that the phage DNA forms part of an organized intracellular structure throughout the period of phage growth. 3. Adsorption of phage T2 to bacterial debris causes part of the phage DNA to appear in solution, leaving the phage sulfur attached to the debris. Another part of the phage DNA, corresponding roughly to the remaining half of the DNA of the inactivated phage, remains attached to the debris but can be separated from it by DNase. Phage T4 behaves similarly, although the two phages can be shown to attach to different combining sites. The inactivation of phage by bacterial debris is evidently accompanied by the rupture of the viral membrane. 4. Suspensions of infected cells agitated in a Waring blendor release 75 per cent of the phage sulfur and only 15 per cent of the phage phosphorus to the solution as a result of the applied shearing force. The cells remain capable of yielding phage progeny. 5. The facts stated show that most of the phage sulfur remains at the cell surface and most of the phage DNA enters the cell on infection. Whether sulfur-free material other than DNA enters the cell has not been determined. The properties of the sulfur-containing residue identify it as essentially unchanged membranes of the phage particles. All types of evidence show that the passage of phage DNA into the cell occurs in non-nutrient medium under conditions in which other known steps in viral growth do not occur. 6. The phage progeny yielded by bacteria infected with phage labeled with radioactive sulfur contain less than 1 per cent of the parental radioactivity. The progeny of phage particles labeled with radioactive phosphorus contain 30 per cent or more of the parental phosphorus. 7. Phage inactivated by dilute formaldehyde is capable of adsorbing to bacteria, but does not release its DNA to the cell. This shows that the interaction between phage and bacterium resulting in release of the phage DNA from its protective membrane depends on labile components of the phage particle. By contrast, the components of the bacterium essential to this interaction are remarkably stable. The nature of the interaction is otherwise unknown. 8. The sulfur-containing protein of resting phage particles is confined to a protective coat that is responsible for the adsorption to bacteria, and functions as an instrument for the injection of the phage DNA into the cell. This protein probably has no function in the growth of intracellular phage. The DNA has some function. Further chemical inferences should not be drawn from the experiments presented.  相似文献   

16.
17.
Phagolessin A58, an antibiotic substance active against a number of bacterial viruses, was studied for activity against the seven T phages. Only three of the seven phages—T1, T3, and T7—proved to be sensitive to the antibiotic. The antibiotic caused a direct, apparently irreversible inactivation of free phage particles. A study of the properties of the inactivated phage particles showed that the particles retained the ability to kill host cells and to exert mutual exclusion against an unrelated phage after infectivity was lost. There was a progressive loss in these two properties when higher concentrations of antibiotic were used to inactivate the phage. Results with inactivated T3 and T7 revealed that these two properties—the ability to kill host cells and to exclude an unrelated phage—were lost at a different rate. They were, therefore, presumed to be different properties of these particular phage particles. The inactivation of phage by phagolessin A58 was inhibited by desoxyribose nucleic acid and to a lesser extent by ribose nucleic add. Cytosine, thymine, adenine, guanine, and cysteine failed to inhibit the reaction.  相似文献   

18.
Protamine 1 mRNAs are inactivated by a block to the initiation of translation in early spermatids and are translationally active in late spermatids in mice. To determine whether translation of protamine 1 mRNAs is inhibited by a protein repressor, the translational activity of ribonucleoprotein particles and deproteinized RNAs were compared in the reticulocyte and wheat germ cell-free translation lysates. To isolate RNPs, cytoplasmic extracts of total testes were fractionated by large-pore gel filtration chromatography. Ribonucleoprotein particles in the excluded fractions stimulated synthesis of radiolabeled translation products for protamine 1 about twofold less effectively than deproteinized RNAs in the reticulocyte lysate, but were inactive in the wheat germ lysate. The ability of translationally repressed protamine 1 ribonucleoprotein particles to form initiation complexes with 80S ribosomes in the reticulocyte lysate was also measured. Protamine 1 ribonucleoprotein particles isolated by gel filtration and in unfractionated cytoplasmic extracts of early spermatids were nearly as active in forming initiation complexes as deproteinized mRNAs. The isolation of ribonucleoprotein particles in buffers of varying ionic strength, protease inhibitors, and several other variables had no major effect on the ability of protamine 1 ribonucleoprotein particles to form initiation complexes in the reticulocyte lysate. These results can be explained by artifacts in the isolation or assay of ribonucleoprotein particles or by postulating that protamine 1 mRNAs are inactivated by a mechanism that does not involve protein repressors, such as sequestration. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The nature of suppressor cells which are contained in lymphocyte suspension of mice immunized with allogeneic tumor cells and inhibit the DNA synthesis activation in mixed normal lymphocyte cultures has been studied. The suppressor cells are shown to be resistant to mitomycin C, X-irradiation and are not inactivated by the treatment of anti-O-serum or anti-Ig-serum in the presence of the complement. They adhere to the plastic and are inactivated by carrageenan in vitro. The macrophage nature of the suppressor cells is suggested.  相似文献   

20.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号