首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lignans are phenylpropanoid dimers, where the phenylpropane units are linked by the central carbon (C8) of their side chains. Ligans vary substantially in oxidation level, substitution pattern, and the chemical structure of their basic carbon framework. In addition to structural diversity, lignans show considerable diversity in terms of enantiomeric composition, biosynthesis, and phylogenetic distribution. In this review, these diversities are outlined and the phylogenetic distribution of plants producing 66 typical lignans is listed. The distribution is correlated with the putative biosynthetic pathways of the lignans and discussed from evolutionary aspects. Abbreviations: SIRD – Secoisolariciresinol dehydrogenase; PLR – pinoresinol lariciresinol reductase; DP – dirigent protein  相似文献   

2.
Stereochemical diversity in lignan biosynthesis of Arctium lappa L   总被引:2,自引:0,他引:2  
The stereochemistry of lignan biosynthesis in Arctium lappa L. is regulated organ-specifically. (+)-Secoisolariciresinol [81% enantiomeric excess (e.e.)] was isolated from A. lappa petioles. In sharp contrast, lignans whose predominant enantiomers have the opposite absolute configuration to that of (+)-secoisolariciresinol [i.e., (-)-matairesinol (>99% e.e.), (-)-arctigenin (>99% e.e.), and (-)-secoisolariciresinol (65% e.e.)] were isolated from seeds of the species. The stereochemical diversity of secoisolariciresinol was demonstrated with enzyme preparations from A. lappa petioles and seeds. Thus, a petiole enzyme preparation catalyzed the formation of (+)-pinoresinol (33% e.e.), (+)-lariciresinol (30% e.e.), and (+)-secoisolariciresinol (20% e.e.) from achiral coniferyl alcohol in the presence of NADPH and H202, whereas that from ripening seeds catalyzed the formation of (-)-pinoresinol (22% e.e.), (-)-lariciresinol (>99% e.e.), and (-)-secoisolariciresinol (38% e.e.) under the same conditions. In addition, the ripening seed enzyme preparation mediated the selective formation of the optically pure (>99% e.e.) (-)-enantiomer of matairesinol from racemic (+/-)-secoisolariciresinols in the presence of NADP. These results indicate that the stereochemical mechanism for lignan biosynthesis in A. lappa varies with organs, suggesting that multiple lignan-synthesizing isozymes are involved in the stereochemical control of lignan formation in A. lappa.  相似文献   

3.
Kuhlmann  S.  Kranz  K.  Lücking  B.  Alfermann  A.W.  Petersen  M. 《Phytochemistry Reviews》2002,1(1):37-43
Plant cell suspension cultures of Linum flavum, Linum nodiflorum and Linum album have been used to characterize the growth and production of cytotoxic lignans as well as to study the biosynthesis of these lignans. A cell culture of Linum nodiflorum accumulated up to 1.7% of the cell dry weight as 6-methoxypodophyllotoxin in only nine days of cultivation. The biosynthesis of podophyllotoxin and 6-methoxypodophyllotoxin follows the formation of the first aryltetralin lignan deoxypodophyllotoxin. Hydroxylation in position 7 by deoxypodophyllotoxin 7-hydroxylase leads to podophyllotoxin. Hydroxylation in position 6 by the cytochrome P450 monooxygenase deoxypodophyllotoxin 6-hydroxylase yields -peltatin which is further methylated by S-adenosylmethionine:-peltatin 6-O-methyltransferase to -peltatin-A methylether and then hydroxylated to 6-methoxypodophyllotoxin. Both, podophyllotoxin as well as 6-methoxypodophyllotoxin are stored as glucosides in the vacuole. Certain enzymes of these transformations have been isolated and characterized from Linum cell cultures.  相似文献   

4.
Linum album accumulates anti-tumor podophyllotoxin (PTOX) and its related lignans, which were originally isolated from an endangered species Podophyllum. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [143 μg g−1 dry weight (DW) of the L. album cell culture], while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol up to 364 μg g−1 DW, instead of PTOX. Typical elicitors, such as chitin, chitosan, or methyl jasmonate (MeJA), were shown to be less effective in lignan production in L. album cell cultures. These results verified the advantages of fungal extracts to increase lignan production in L. album cell culture, and suggested potential on-demand metabolic engineering of lignan biosynthesis using differential fungal extracts.  相似文献   

5.
Plant lignans are natural products resulting from the phenylpropanoid metabolic pathway. Some of these compounds have phytoestrogen properties and may protect humans against hormone-dependent cancers such as breast cancer. Secoisolariciresinol, usually in glycosidic form, is the major lignan in flaxseed (Linum usitatissimum L.), and the main precursor of the mammalian lignans (enterodiol, enterolactone) known for their beneficial effects on human health. The quantification of secoisolariciresinol requires a preliminary acid hydrolysis, necessary for the release of lignans from their complex form and aglycone from the glycosylated derivatives. This step partially converts secoisolariciresinol into its anhydrous form: anhydrosecoisolariciresinol. For this reason, we have developed an HPLC quantification method of secoisolariciresinol from flaxseed through its derived form obtained by a total acid hydrolysis. These conditions allow a simplification of the HPLC procedure and allow complete transformation of secoisolariciresinol into its anhydrous form. Using this method, the lignan level in L. usitatissimum seeds was determined to be about 6 mg g–1 DW. Furthermore, levels of anhydrosecoisolariciresinol were also determined in the different organs of the whole plant, in particular the leaves, stems, roots and fruits. Seeds and fruits accumulated the highest levels of lignans.  相似文献   

6.
Microsomal preparations from dark-grown Linum usitatissimum (linen flax) seedlings synthesize acetone cyanohydrin, the precursor of the cyanogenic glucoside linamarin, from valine in the presence of NADPH. N-Hydroxyvaline and isobutyraldoxime, which are predicted intermediates in the pathway, are also converted into products. These microsomal preparations also convert isoleucine into 2-butanone cyanohydrin the precursor of lotaustralin. The biosynthetic activity is located exclusively in the developing cotyledons.  相似文献   

7.
A lignan, lariciresinol, was isolated from Arabidopsis thaliana, the most widely used model plant in plant bioscience sectors, for the first time. In the A. thaliana genome database, there are two genes (At1g32100 and At4g13660) that are annotated as pinoresinol/lariciresinol reductase (PLR). The recombinant AtPLRs showed strict substrate preference toward pinoresinol but only weak or no activity toward lariciresinol, which is in sharp contrast to conventional PLRs of other plants that can reduce both pinoresinol and lariciresinol efficiently to lariciresinol and secoisolariciresinol, respectively. Therefore, we renamed AtPLRs as A. thaliana pinoresinol reductases (AtPrRs). The recombinant AtPrR2 encoded by At4g13660 reduced only (-)-pinoresinol to (-)-lariciresinol and not (+)-pinoresinol in the presence of NADPH. This enantiomeric selectivity accords with that of other PLRs of other plants so far reported, which can reduce one of the enantiomers selectively, whatever the preferential enantiomer. In sharp contrast, AtPrR1 encoded by At1g32100 reduced both (+)- and (-)-pinoresinols to (+)- and (-)-lariciresinols efficiently with comparative k(cat)/K(m) values. Analysis of lignans and spatiotemporal expression of AtPrR1 and AtPrR2 in their functionally deficient A. thaliana mutants and wild type indicated that both genes are involved in lariciresinol biosynthesis. In addition, the analysis of the enantiomeric compositions of lariciresinol isolated from the mutants and wild type showed that PrRs together with a dirigent protein(s) are involved in the enantiomeric control in lignan biosynthesis. Furthermore, it was demonstrated conclusively for the first time that differential expression of PrR isoforms that have distinct selectivities of substrate enantiomers can determine enantiomeric compositions of the product, lariciresinol.  相似文献   

8.
The cytoskeleton in plant cells is a dynamic structure that can rapidly respond to extracellular stimuli. Alteration of the organization of microtubules and actin microfilaments was examined in mesophyll cells of flax, Linum usitatissimum L., during attempted infection by the flax rust fungus, Melampsora lini (Ehrenb.) Lev. Flax leaves that had been inoculated with either a compatible (yielding a susceptible reaction) or an incompatible (yielding a resistant reaction) strain of M. lini were embedded in butyl-methylmethacrylate resin; sections of this material were immunofluorescently labelled with anti-tubulin or anti-actin and examined using confocal laser scanning microscopy. In uninfected leaves, microtubules in the mesophyll cells formed a transverse array in the cell cortex. Microfilaments radiated through the cytoplasm from the nucleus. In an incompatible interaction, microtubules and microfilaments were extensively reorganized in mesophyll cells that were in contact with fungal infection hyphae or haustorial mother cells before penetration of the cell by the infection peg. After the initiation of haustorium development, microtubules disappeared from the infected cells, and growth of the haustoria ceased. In an incompatible interaction, hypersensitive cell death occurred in more than 70% of infected cells but occurred in less than 20% of cells in compatible interactions. After the infected cell had undergone hypersensitive cell death, the cytoskeleton in neighbouring cells became focused on the walls shared with the necrotic cell. In compatible interactions, reorganization of the cytoskeleton was either not observed at all or was observed much less frequently up to 48 h after inoculation.Abbreviations FITC fluorescein isothiocyanate - WGA wheatgerm agglutinin We thank Dr. G.J. Lawrence for providing valuable discussions and materials.  相似文献   

9.
Summary The inheritance of two mutants of flax (Linum usitatissimum), having altered proportions of the C18 polyunsaturated fatty acids, linoleic and linolenic, was examined. Both lines, M1589 and M1722, are homozygous for a single gene mutation which reduces linolenic acid content from 34% to 22% and raises linoleic acid from 15% to 27%. Genetic analysis of crosses involving M1589, M1722 and their parental cultivar Glenelg revealed that these mutations are in different unlinked genes and exhibit additive (codominant) gene action. The symbolsLn1 andLn2 are proposed for the mutated genes in M1589 and M1722, respectively. Recombinant genotypes homozygous for the mutant alleles at both loci are very low in linolenic acid (2%) and high in linoleic acid (48%), with unaltered proportions of other fatty acids. The complete inverse correlation between linoleic and linolenic acids (r=-0.98) indicates that the mutations block the synthesis of linolenic acid at the linoleic desaturation step.  相似文献   

10.
11.
Quatrano RS 《Plant physiology》1968,43(12):2057-2061
  相似文献   

12.
13.
Salt dependent dimerisation of caldesmon   总被引:2,自引:0,他引:2  
R A Cross  K E Cross  J V Small 《FEBS letters》1987,219(2):306-310
Using analytical gel filtration (FPLC) we show here that avian gizzard caldesmon (chain molecular mass 150 kDa) self-associates to form end-to-end dimers. Increasing salt concentration promotes dimerisation: at 150 mM KCl, about 40% of the caldesmon was dimeric. Freshly gel filtered caldesmon had an actin gelating activity which decreased with increasing ionic strength. At 150 mM KCl, caldesmon at a 1:90 molar ratio to actin doubled the low shear viscosity of F-actin. Sixfold less filamin was required to produce the same effect.  相似文献   

14.
Phospholipid biosynthesis in mammalian cells.   总被引:8,自引:0,他引:8  
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.  相似文献   

15.
Gastrin requires extensive posttranslational processing for full biological activity. It is presumed that progastrin is cleaved at pairs of basic amino acids by a prohormone convertase to form a glycine-extended intermediate (G-Gly) that serves as a substrate for peptidyl-glycine alpha-amidating monooxygenase (PAM), resulting in COOH-terminally amidated gastrin. To confirm the nature of progastrin processing in a primary cell line, we performed [(35)S]methionine-labeled pulse-chase biosynthetic experiments in canine antral G cells. Radiolabeled progastrin reached a peak earlier than observed for G-Gly or amidated gastrin. G-Gly radioactivity accumulated in G cells and preceded the appearance of radioactivity in amidated gastrin. The conversion of G-Gly to amidated gastrin was enhanced by the PAM cofactor ascorbic acid. To determine whether one member of the prohormone convertase family (PC2) was responsible for progastrin cleavage, G cells were incubated with PC2 antisense oligonucleotide probes. Cells treated with antisense probes had reduced PC2 expression, an accumulation of radiolabeled progastrin, and a delay in the formation of amidated gastrin. Progastrin in antral G cells is cleaved via PC2 to form G-Gly that is converted to amidated gastrin via the actions of PAM.  相似文献   

16.
This review describes discoveries from this laboratory on monolignol, allylphenol and hydroxycinnamic acid coupling, and downstream metabolic conversions, affording various lignan skeleta. Stereoselective 8-8′ coupling (dirigent protein-mediated) of coniferyl alcohol to afford (+)-pinoresinol is comprehensively discussed, as is our current mechanistic/kinetic understanding of the protein’s radical-radical binding, orientation and coupling properties, and insights gained for other coupling modes, e.g. affording (−)-pinoresinol. In a species dependent manner, (+)- or (−)-pinoresinols can also undergo enantiospecific reductions, catalyzed by various bifunctional pinoresinol-lariciresinol reductases (PLR), to afford lariciresinol and then secoisolariciresinol. With X-ray structures giving a molecular basis for differing PLR enantiospecificities, comparisons are made herein to the X-ray structure of the related enzyme, phenylcoumaran benzylic ether reductase, capable of 8-5′ linked lignan regiospecific reductions. Properties of the enantiospecific secoisolariciresinol dehydrogenase (also discovered in our laboratory and generating 8-8′ linked matairesinol) are summarized, as are both in situ hybridization and immunolocalization of lignan pathway mRNA/proteins in vascular tissues. This entire 8-8′ pathway thus overall affords secoisolariciresinol and matairesinol, viewed as cancer preventative agent precursors, as well as intermediates to cancer treating substances, such as podophyllotoxin derivatives. Another emphasis is placed on allylphenol/hydroxycinnamic acid coupling and associated downstream metabolism, e.g. affording the antiviral creosote bush lignan, nordihydroguaiaretic acid (NDGA), and the fern lignans, blechnic/brainic acids. Regiospecific 8-8′ allylphenol coupling is described, as is characterization of the first enantiospecific membrane-bound polyphenol oxidase, (+)-larreatricin hydroxylase, involved in NDGA formation. Specific [13C]-labeling also indicated that Blechnum lignans arise from stereoselective 8-2′ hydroxycinnamic acid coupling. Abbreviations: CD – circular dichroism; e.e. – enantiomeric excess; DP – dirigent protein; ESI-MS – electrospray ionization mass spectrometry; MALDI -TOF – matrix assisted laser desorption ionization-time of flight; MALLS – multiangle laser light scattering; PLR – pinoresinol lariciresinol reductase; SDH – secoisolariciresinol dehydrogenase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Ten potential lignan metabolites were quantified in rat urine extracts using liquid chromatography-tandem mass spectrometry. The rats were orally administered with the plant lignans 7-hydroxymatairesinol, matairesinol, lariciresinol or secoisolariciresinol, or with the mammalian lignan enterolactone. The samples were enzymatically hydrolysed and solid-phase extracted before analysis. Of the analysed compounds, only trace amounts of 7-oxoenterolactone could be detected in the urine extracts before administration, but after administration of any of the lignans, the excretion of 7-oxoenterolactone increased and monodemethylated matairesinol and 4,4'-dihydroxyenterolactone could be detected. In addition, other novel lignan metabolites were detected, i.e., 7-oxomatairesinol, alpha-conidendrin, and alpha- and beta-conidendric acid.  相似文献   

18.
Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4′-feruloyl ethers. In-depth quantitative analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.  相似文献   

19.
Selenium (Se) is an integral part of the Se-dependent glutathione peroxidase (Se-GSH-Px) catalytic domain. By modulating the cellular levels of fatty acid hydroperoxides, Se-GSH-Px can influence key enzymes of arachidonic acid cascade, in this case cyclooxygenase (COX) and lipoxygenase (LOX). To investigate this phenomenon, the effects of cellular Se status on the enzymatic oxidation of arachidonic acid were investigated in bovine mammary endothelial cells (BMEC), which were cultured in either Se-deficient (-Se) or Se-adequate (+Se) media. When stimulated with calcium ionophore A23187, BMEC produced eicosanoids of both COX and LOX pathways. Compared with the Se-adequate cells, the production of prostaglandin I(2) (PGI(2)), prostaglandin F(2) (PGF(2alpha)), and prostaglandin E(2) (PGE(2)) was significantly decreased in Se-deficient cells, whereas the production of thromboxane A(2) (TXA(2)) was markedly increased in the -Se BMEC cultures. Although the enzymatic oxidation of arachidonic acid by the LOX pathway was found to be relatively less than by the COX pathway, the BMEC cultured in -Se media produced significantly more 15-hydroperoxyeicosatetraenoic acid (15-HPETE) than the +Se cells produced. Based on these results, we postulate that cellular Se status plays an important regulatory role in the enzymatic oxidation of arachidonic acid by the COX and LOX pathways. The altered eicosanoid biosynthesis, especially the overproduction of 15-HPETE, in -Se BMEC may be one of the underlying biochemical phenomena responsible for vascular dysfunction during Se deficiency.  相似文献   

20.
Cultured adrenal chromaffin cells, representing a virtually homogeneous population of neuronai elements, have been utilized to examine the final enzymes in the formation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), namely, choline phosphotransferase, ethanolaminephosphotransferase, and the N-methyltransferases in the sequential methylation of PE to PC. Each enzyme has been characterized extensively in terms of substrate requirements, pH optima, detergent and cation effects, and response to inhibitors revealing properties very similar to those in other neural preparations. The respective activities are stable for up to two weeks of adrenal chromaffin cell culture suggesting that this system is a suitable model for examining the relative roles and the regulation of each pathway in PC formation.Abbreviations EPT ethanolaminephosphotransferase - CPT cholinephosphotransferase - NMT N-methyltransferase This work supported by funds provided to the Section of Pediatric Neurology by Texas Children's Hospital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号