首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Up to 5% of the totally fixed nitrogen and up to 11% of the totally formed protein were detected in cell-free culture fluids of diazotrophic Azotobacter vinelandii growing in continuous culture. The actual amounts of nitrogen and protein changed with ambient oxygen concentrations in the growth medium. While with whole cells the ratio of nitrogen per protein remained constant it varied with the extracellular moiety with changes of the oxygen concentration. Analyses of the cell-free culture fluid revealed the presence of a typical polypeptide pattern with a predominant 60 K polypeptide, significant amounts of ammonia at low oxygen concentrations as well as glutamic acid in both monomeric and polymeric form. Steady state levels of these extracellular components varied independently of each other with changes of the ambient oxygen concentration.Dedicated to Prof. G. Drews on occasion of his 60th birthday  相似文献   

2.
Azotobacter vinelandii growing in oxygen controlled chemostat culture was subjected to sudden increases of ambient oxygen concentrations (oxygen stress) after adaptation to different oxygen concentrations adjustable with air (100% air saturation corresponds to 225±14 M O2). Inactivations of cellular nitrogenase during stress (switch off) as well as after release of stress (switch on) were evaluated in vivo as depending on stress duration and stress height (pO2). Switch off was at its final extent within 1 min of stress. The extent of switch off, however, increased with stress height and was complete at pO2 between 8–10% air saturation irrespective of different oxygen concentrations the organisms were adapted to before stress, indicating that switch off is adaptable. Inactivation of nitrogenase measurable after switch on represents irreversible loss of activity. Irreversible inactivation was at its characteristic level within less than 3 min of stess and at a pO2 of less than 1% air saturation. The level of irreversible inactivation increased linearly with the oxygen concentration the organisms were adapted to before stress. Thus adaptation of cells to increased oxygen concentrations did not prevent increased susceptibility of nitrogenase to irreversible inhibition during oxygen stress. The fast response of irreversible inactivation at low stress heights suggests that it takes place already during stress. Thus switch off comprised both a reversible and an irreversible phase. The data showed that reversible inactivation of nitrogenase was less susceptible to oxygen stress than irreversible inactivation. A basic pre-requisite of the hypothesis of respiratory protection of nitrogenase, i.e. the proposed relationship between respiratory activities and the protection of nitrogenase from irreversible inhibition by oxygen, was not supported by the results of this report.  相似文献   

3.
Azotobacter vinelandii was grown diazotrophically in sucrose-limited chemostat cultures at either 12, 48, 108, 144 or 192 M dissolved oxygen. Steady state protein levels and growth yield coefficients (Y) on sucrose increased with increasing dilution rate (D). Specific rate of sucrose consumption (q) increased in direct proportion to D. Maintenance coefficients (m) extrapolated from plots of q versus D, as well as from plots of 1/Y versus 1/D exhibited a nonlinear relationship to the dissolved oxygen concentration. Constant maximal theoretical growth yield coefficients (Y G) of 77.7 g cells per mol of sucrose consumed were extrapolated irrespective of differences in ambient oxygen concentration. For comparison, glucose-, as well as acetate-limited cultures were grown at 108 M oxygen. Fairly identical m- and Y G-values, when based on mol of substrate-carbon with glucose and sucrose grown cells, indicated that both substrates were used with the same efficiency. However, acetate-limited cultures showed significantly lower m- and, at comparable, D, higher Y-values than cultures limited by either sucrose or glucose. Substrate concentrations (K s) required for half-maximal growth rates on sucrose were not constant, they increased when the ambient oxygen concentration was raised and, at a given oxygen concentration, when D was decreased. Since biomass levels varied in linear proportion to K s these results are interpreted in terms of variable substrate uptake activity of the culture.Abbreviations D dilution rate - K s substrate concentration required for half maximal growth rate - m maintenance coefficient - q specific rate of substrate consumption - Y growth yield coefficient - Y G maximum theoretical growth yield coefficient  相似文献   

4.
Azotobacter vinelandii was grown at constant growth rate in a chemostat with different molar ratios of sucrose to ammonium (C/N) in the influent media. Both compounds were consumed at essentially the same ratios as were present in the influent media. At low (C/N)-ratios, the cultures were ammonium-limited. At increased (C/N)-ratio ammonium-assimilating cultures additionally began to fix dinitrogen. The (C/N)-ratio at which nitrogenase activity became measurable, increased when the ambient oxygen concentration was increased. Immunoblotting revealed the appearance of nitrogenase proteins when the activity became detectable. Nitrogenase activity as determined either by acetylene reduction or by total nitrogen fixation gave constant relative activities of 1:3.8 (mol of N2 fixed per mol of acetylene reduced) under all sets of conditions used in this investigation. In spite of the oxygen dependent variation of the (C/N)-ratio, nitrogenase became active when the ammonium supply was less than about 14 nmol of ammonium per g of protein. This suggests that oxygen was not directly involved in the onset of dinitrogen fixation.  相似文献   

5.
Azotobacter vinelandii was grown in continuous culture at constant dilution rate and at different molar ratios of sucrose to ammonium (C/N) in the inflowing medium. The organisms used up essentially all of the carbon and fixed nitrogen sources. Therefore, the (C/N)-ratio in the influent was the same as the (C/N)-ratio of consumption. Starting close to unity, slight increases of the (C/N)-ratio resulted in increases of cellular respiration. Concomitantly, growth yield coefficients on sucrose decreased while the total biomass stayed constant. At there low (C/N)-ratios growth was limited by ammonium with a yield coefficient on ammonium of about 0.07 g protein per mmol of ammonium. Eventually, however, upon furhter increasing the (C/N)-ratio, respiration as well as the yield coefficient on sucrose approached constant values while the biomass levels increased linearly. This result indicated that a transition to sucrose-limited growth had occurred. The (C/N)-ratio, above which respiration and yield coefficients on sucrose approached constancy, increased when the cultures were grown at higher oxygen tension. When the oxygen tension was higher, and at the same (C/N)-ratios, respiratory values increased, and biomass levels as well as yield coefficients decreased. The data suggest control of respiration and thus of growth yield by the ratio of sucrose to ammonium consumed. These observations infer that commencement of dinitrogen fixation kept the internal (C/N)-ratio constant and consequently respiration as well as yield coefficients on sucrose were maintained.  相似文献   

6.
Membrane development as a response to growth at different oxygen tensions (from about 1% to 100% saturation of the medium with air) was determined inAzotobacter vinelandii strain OP. The organisms were grown in a carbonlimited chemostat either on atmospheric nitrogen or on ammonium as nitrogen sources. Both types of cultures increased not only the number of intracytoplasmic membrane vesicles per cell but also the cell volume with aeration. As the ratio of length per width stayed largely constant increases of volume resulted in decreases of the cell surface area, representing the surface area of the peripheral cytoplasmic membrane, per cell volume. While in nitrogen-fixing cells the proportion of intracytoplasmic membrane surface area per cytoplasmic membrane surface area increased from 1:2 to 3:1 the ratio stayed almost constant in ammonium-assimilating cells. The data suggest that oxygen controls changes in the ratio of intracytoplasmic to cytoplasmic membrane surface areas only under conditions of nitrogen fixation.Abbreviations CM Cytoplasmic membrane - ICM intracytoplasmic membrane  相似文献   

7.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

8.
New metabolites exhibiting antifungal activity were isolated from the culture liquid of Azotobacter vinelandii strain IB 4. The metabolites were characterized by IR and 13C-NMR spectroscopy and defined as sucrose polythiophosphates of tetraamine (α-D-2,3-diaminoglucopyranosyl-β-D-3,4-diaminofructofuranose).  相似文献   

9.
Summary The tetracycline-resistant transposon Tn10 and its high-hopper derivative Tn10HH104 were introduced into the Azotobacter vinelandii genome using suicide conjugative plasmids derived from pRK2013. Several types of mutants induced by either of these elements are described. Nif- mutants (deficient in nitrogen fixation) were easily isolated, whereas the isolation of other mutant types (auxotrophs, sugar non-users) required special selection conditions. The characterization of the mutations as transposon insertions was often complicated and sometimes required a combination of genetic and physical tests. A common source of complication, the existence of double inserts, was found among the mutants induced by Tn10HH104 but not among those induced by Tn10. Both the high-hopper and the wild-type element proved to undergo secondary transpositions, albeit at different frequencies. Another type of complication, the existence of heterozygotes, occurred because of the high level of redundancy of the A. vinelandii genome.  相似文献   

10.
Summary A chromosomal map of Azotobacter vinelandii strain UW was constructed. The map was based on measures of cotransfer of various markers mediated by plasmids R68.45 and pJB3JI, on results obtained from conjugal experiments with R-primes, and on recombinants obtained by chromosomal transfer mediated by RP4/Tn5-Mob.  相似文献   

11.
An enzyme catalyzing the hydrolysis of purine nucleosides was found to occur in the extract of Azotobacter vinelandii, strain 0, and was highly purified by ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxylapatite chromatography and gel filtration on Sephadex G-150. A strict substrate specificity of the purified enzyme was shown with respect to the base components. The enzyme specifically attacked the nucleosides without amino groups in the purine moiety: inosine gave the maximum rate of hydrolysis and xanthosine was hydrolyzed to a lesser extent. The pH optimum of inosine hydrolysis was observed from pH 7 to 9, while xanthosine was hydrolyzed maximally at pH 7. The K m values of the enzyme for inosine were 0.65 and 0.85 mM at pH 7.1 and 9.0, respectively, and the value for xanthosine was 1.2 mM at pH 7.1.Several nucleotides inhibited the enzyme: the phosphate portions of the nucleotides were suggested to be responsible for the inhibition by nucleotides. Although the inhibition of the enzyme by nucleotides was apparently non-competitive type with respect to inosine, allosteric (cooperative) binding of the substrate was suggested in the presence of the inhibitor. The physiological significance of the enzyme was discussed in connection with the degradation and salvage pathways of purine nucleotides.  相似文献   

12.
Nitrogenase activity in cell-free extracts of Azotobacter vinelandii declines during encystment. Upon germination a rapid increase in activity is observed, which is suppressed by rifampicin, suggesting that de novo biosynthesis of the nitrogenase proteins is required. The decline of activity during encystment is accompanied by disappearance of both nitrogenase proteins from cell extracts, indicating irreversible proteolysis. Total proteinase activity does not change significantly during encystment.  相似文献   

13.
Growth and nitrogenase activity (acetylene reduction) of Azotobacter vinelandii in chemically defined N-free media were studied in the presence of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acids at concentrations from 0.01 to 1% (w/v). Growth and nitrogenase activity were only detected when the microorganism was cultured on p-hydroxybenzoic acid either as sole carbon source or mixed with other phenolic acids, suggesting that p-hydroxybenzoic acid could be utilized as a carbon source by A. vinelandii for growing under certain environmental conditions.  相似文献   

14.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65°C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides.  相似文献   

15.
J. Oelze 《Plant and Soil》1991,137(1):135-138
The question, whetherAzotobacter vinelandii can provide fixed N for the growth of other organisms, was studied with mixed cultures ofA. vinelandii andRhodobacter capsulatus, grown with aeration in the light. N2-fixation byR. capsulatus was prevented by growing the cultures on either mannitol, glycerol or ethanol, which cannot be used by this organism. In the course of growth with mannitol, cell numbers of both organisms increased largely in parallel and attained a maximal ratio of about oneA. vinelandii per tenR. capsulatus. Prolonged growth of mixed cultures with mannitol did not lead to an adaptation ofR. capsulatus to this compound. After growth on either one of the three alcohols, mixed cultures exhibited almost twice as high protein levels as pure cultures ofA. vinelandii. Up to 80% of the protein of mixed cultures was incorporated intoR. capsulatus. The results suggest thatA. vinelandii provided an organic N-source for the growth ofR. capsulatus.  相似文献   

16.
Summary The antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured in the rete mirabile and gas gland epithelium area of the swim bladder of the toadfish Opsanus tau. When the concentration of enzyme in the swim bladder was compared with the concentration in other organs (kidney, heart, gills) of the same fish, the swim bladder was found to have the highest concentration of superoxide dismutase but relatively low levels of glutathione peroxidase and catalase.Cytochemical assay for the peroxidatic activity of catalase confirmed that virtually no catalase is present in epithelial cells of the gas gland. A similar assay for peroxidase revealed a cyanide-sensitive peroxidase in the multilamellar bodies of these cells. Most of the catalase and peroxidase in the rete mirabile appears to be confined to the granules of neutrophils and the cytoplasm of erythrocytes. Enzyme activity in the neutrophils is not inhibited by 10-1 M KCN. Cyanide does appear to inhibit the peroxidase activity in erythrocytes but has little effect on catalase in these cells.Supported by grant No. HL23338 from the National Institutes of Health  相似文献   

17.
In cultures of Azotobacter vinelandii inoculated using washed cells (avoiding exhausted broth components) alginates of a higher molecular weight (1200 kDa) than those obtained in cultures conventionally inoculated (350 kDa), were produced. Also, when comparing conventionally inoculated cultures with those inoculated with washed-cells, the alginate lyase activity was delayed and the final polymer concentration decreased from 4.8 to 3.5 g l–1. This suggests that components in the exhausted inoculum broth play important regulatory roles in alginate biosynthesis and needs to be taken into account when describing polymer biosynthesis.  相似文献   

18.
Summary Two strains ofSaccharomyces cerevisiae were used to study the synthesis of superoxide dismutase. One strain (cytochromec-deficient) contained 5–10% of the normal amounts of total cytochromec, while the other strain was a wild type. The cytochromec-deficient mutant had lower specific growth rate, growth yield, and oxygen uptake than the wild type. The superoxide dismutase and catalase activities, in both strains, were significantly lower under anaerobic than under aerobic conditions. Furthermore, under aerobic conditions the mutant contained higher levels of superoxide dismutase than the wild type which may be attributed to the higher intracellular flux of superoxide radicals caused by the cytochromec deficiency. The mutant also showed a lower level of catalase which was due to glucose repression.Paper Number 10007 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695, U.S.A. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned.  相似文献   

19.
A. Puppo  L. Dimitrijevic  J. Rigaud 《Planta》1982,156(4):374-379
Superoxide anion is able to oxidize oxyleghemoglobin prepared from soybean nodules. Furthermore, ferrileghemoglobin is oxidized to leghemoglobin (IV) by hydrogen peroxide and this irreversible reaction leads to a complete inactivation of the hemoprotein. In scavenging O 2 - and H2O2, superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are able to limit these oxidations. The occurrence of these enzymes within soybean nodules and their main characteristics are reported here. A general scheme taking into account their roles in leghemoglobin protection in vivo is proposed.Abbreviations Lb leghemoglobin - SOD superoxide dismutase  相似文献   

20.
Azotobacter vinelandii was grown diazotrophically at different dissolved oxygen concentrations (in the range of 3 to 216 microM) in sucrose-limited continuous culture. The specific nitrogenase activity, measured on the basis of acetylene reduction in situ, was dependent solely on the growth rate and was largely independent of oxygen and sucrose concentration. FeMo (Av1) and Fe (Av2) nitrogenase proteins were quantified after Western blotting (immunoblotting). When the cultures were grown at a constant dilution rate (D, representing the growth rate, mu) of 0.15.h-1, the cellular levels of both proteins were constant regardless of different dissolved oxygen concentrations. The same was true when the organisms were grown at D values above 0.15.h-1. At a lower growth rate (D = 0.09.h-1), however, and at lower oxygen concentrations cellular levels of both nitrogenase proteins were decreased. This means that catalytic activities of nitrogenase proteins were highest at low oxygen concentrations, but at higher oxygen concentrations they increased with growth rate. Under all conditions tested, however, the Av1:Av2 molar ratio was 1:(1.45 +/- 0.12). Cellular levels of flavodoxin and FeS protein II were largely constant as well. In order to estimate turnover of nitrogenase proteins in the absence of protein synthesis, chloramphenicol was added to cultures adapted to 3 and 216 microM oxygen, respectively. After 2 h of incubation, no significant decrease in the cellular levels of Av1 and Av2 could be observed. This suggests that oxygen has no significant effect on the breakdown of nitrogenase proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号