首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Keen MJ  Hale C 《Cytotechnology》1995,18(3):207-217
A protein-free growth medium (W38 medium) had previously been developed for the NS0 mouse myeloma cell line which is cholesterol-auxotrophic. This paper describes the development of a protein-free growth medium for NS0 cells expressing humanised monoclonal antibody using GS (glutamine synthetase) as a selectable marker. Several GS-engineered NS0 cell lines expressing humanised monoclonal antibody grew in a modification of W38 medium which maintained GS-selection, supplemented with cholesterol, phosphatidylcholine and -cyclodextrin. Further studies showed that additional glutamic acid, asparagine, ribonucleosides and choline chloride improved cell growth. Amino acid analysis identified a number of amino acids that were being depleted from the culture medium. NS0 cell lines 9D4 and 2H5 expressing CAMPATH-1H* were adapted to enable them to grow serum-free in the absence of cholesterol and -cyclodextrin. Cholesterol-independent 9D4 (9D4.CF) cells grown in shake flask culture using an enriched protein-free medium (WNSD medium), supplemented with human recombinant insulin (Nucellin), reached a maximum cell density to 1.86×106 cells ml–1 producing 76.6 mg l–1 of antibody. CAMPATH-1H antibody produced using serum-free medium was found to be functionally activein vitro in the Antibody Dependant Cellular Cytotoxicity (ADCC) assay.Abbreviations C cholesterol - CD cyclodextrin - dhfr dihydrofolate reductase - F68 Pluronic F68 - GS glutamine synthetase - MSX methionine sulphoximine - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - ADCC Antibody-dependant cellular cytotoxicity  相似文献   

2.
Adenylation domains are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs display a wide range of biological activities and are some of the most important drugs currently used in clinics. Traditionally, activity of adenylation domains has been measured by radioactive ATP-[32P]pyrophosphate (PPi) exchange assays. To identify adenylation domains for future combinatorial production of novel NRPs as potential drugs, we report a convenient high-throughput nonradioactive method to measure activity of these enzymes. In our assay, malachite green is used to measure orthophosphate (Pi) concentrations after degradation by inorganic pyrophosphatase of the PPi released during aminoacyl-AMP formation by action of the adenylation domains. The assay is quantitative, accurate, and robust, and it can be performed in 96- and 384-well plate formats. The performance of our assay was tested by using NcpB-A4, one of the seven adenylation domains involved in nostocyclopeptide biosynthesis. The kinetics of pyrophosphate release monitored by this method are much slower than those measured by a traditional ATP-[32P]PPi exchange assay. This observation indicates that the formation of the adenylated amino acid and its release are the rate-limiting steps during the catalytic turnover.  相似文献   

3.
Chemically defined iron compounds were investigated for the development of animal protein-free cell culture media to support growth of CHO cells and production of monoclonal antibodies (mAb). Using a multivessel approach of 96-well plates, shake flasks, and bioreactors, we identified iron and its chemical partner citrate as critical components for maintenance of continuous cell growth and mAb production. The optimized iron concentration range was determined to be 0.1-0.5 mM and that for citrate 0.125-1 mM. This complete formulation is able to maintain cell growth to similar levels as those supplemented with iron compounds alone; however, mAb productivity was enhanced by 30-40% when citrate was present. The addition of sodium citrate (SC) did not affect product quality as determined by size exclusion chromatography, ion exchange chromatography, reversed phase and normal phase-HPLC. No significant changes in glucose and lactate profiles, amino acid utilization, or mAb heavy and light chain expression ratios were observed. Cellular ATP level was ~30% higher when SC was included suggesting that SC may have a role in enhancing cellular energy content. When cell lysates were analyzed by LC-MS to assess the overall cellular protein profile, we identified that in the SC-containing sample, proteins involved in ribosome formation and protein folding were upregulated, and those functions in protein degradation were downregulated. Taken together, this data demonstrated that iron and citrate combination significantly enhanced mAb production without altering product quality and suggested these compounds had a role in upregulating the protein synthetic machinery to promote protein production.  相似文献   

4.
Summary Oxidant injury of the vascular endothelium is considered an early event in the pathogenesis of atherosclerosis. The model of oxidant injury is crucial to the investigation of antioxidants. In the present study, a convenient in vitro model of oxidant injury induced by hydrogen peroxide (H2O2) was developed using bovine pulmonary artery endothelial cells (PAEC). Viability of PAEC grown in 96-well culture plates was determined with methylthiazol tetrazolium (MTT) colorimetric assay. Cell membrane integrity was measured by lactate dehydrogenase (LDH) release from PAEC grown in 24-well plates. Malondialdehyde (MDA, a product of lipid peroxidation) in PAEC grown in 6-well plates was detected by a thiobarbituric acid fluorometric assay. Incubation of H2O2 with PAEC caused a dose-dependent decrease of cell viability, an increase of LDH release, and an elevation of MDA production. MTT assay was convenient, quantitative, non-radioactive, and suitable for testing a large number of samples. The fluorometric assay for measuring MDA production in endothelial cells used 6-well plates instead of 80-cm2 flasks employed by previous investigators. The use of multiwell culture plates in these assays made it possible for more samples to be tested in any single experiment. The three assays are reproducible with low intraplate and interplate coefficients of variation. This in vitro model is suitable for screening antioxidants and for studying pharmacodynamics at the cellular level.  相似文献   

5.
Zhao Q  Zhang W  Jin M  Yu X  Deng M 《Biotechnology progress》2005,21(3):1008-1012
Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.  相似文献   

6.
A 96-well microtiter enzyme-linked immunosorbent assay (ELISA) for protein tyrosine kinases has been developed. This assay uses one of several substrates that are phosphorylated by tyrosine kinase, an antibody to phosphotyrosine, and a peroxidase-linked second antibody. Color development is monitored by a change in absorbance at 450 nm and is dependent upon time, enzyme, ATP, and substrate concentrations. Specificity of the ELISA for phosphotyrosine was shown by inhibition of binding of the anti-phosphotyrosine antibody with phenyl phosphate. Results obtained in the ELISA compared favorably with those obtained by direct phosphorylation of the substrate with [32P]ATP. Staurosporine and K252a, protein kinase inhibitors, showed titratable inhibition of tyrosine kinase activity. This assay is a rapid, nonradioactive alternative to traditional methodology and is also amenable to automation.  相似文献   

7.
In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation.  相似文献   

8.
Statistically designed experiments were used in developing a low-serum medium for the production of a diagnostic monoclonal antibody against congenital adrenal hyperplasia using hybridoma 192. A two-level half-fractional factorial design was used for screening six components (Minimum Essential Medium Eagle amino acids, 2-mercaptoethanol, ethanolamine, ferric citrate, zinc sulfate, and sodium selenite). The experimental design was then augmented to central composite design. The basal Dulbecco’s modified Eagle’s medium (DMEM; containing 4?mM L-glutamine, 1% antibiotic–antimycotic agent) supplemented with 0.4% by volume fetal bovine serum (FBS), 311.8?mM ferric citrate, 17.3?nM sodium selenite, and 4.5?mM zinc sulfate (LSD) was found to support the growth of the hybridoma. Specific cell growth rate in the LSD (0.033?±?0.001/h) was slightly lower than in the control medium (i.e., basal DMEM supplemented with 2% FBS; 0.0045?±?0.003/h). Nevertheless, the specific MAb production rate for LSD was higher (0.057?±?0.015 pg/cell?·?h versus 0.004?±?0.002 pg/cell?·?h in LSD and control, respectively). The antibody produced in the LSD showed high specificity and no cross-reactivity with the other structural resemblance’s steroid hormones, revealing no structural changes owing to the new medium formulation developed. The new medium formulation effectively reduced the medium cost by up to 64.6%.  相似文献   

9.
We have recently developed a protein-free medium (PFS) able to support the growth of Chinese hamster ovary (CHO) cells in suspension. Upon further supplementation with some plant protein hydrolysates, medium performances reached what could be observed in serum-containing media [Burteau et al. In Vitro Cell. Dev. Biol.-Anim. 39 (2003) 291]. Now, we describe the use of rice and wheat protein hydrolysates, as non-nutritional additives to the culture medium to support productivity and cell growth in suspension or in microcarriers. When CHO-320 cells secreting recombinant interferon-gamma (IFN-γ) were cultivated in suspension in a bioreactor with our PFS supplemented with wheat hydrolysates, the maximum cell density increased by 25% and the IFN-γ secretion by 60% compared to the control PFS. A small-scale perfusion system consisting of CHO-320 cells growing on and inside fibrous microcarriers under discontinuous operation was first developed. Under these conditions, rice protein hydrolysates stimulated recombinant IFN-γ secretion by 30% compared to the control PFS. At the bioreactorscale, similar results were obtained but when compared to shake-flasks studies, nutrients, oxygen or toxic by-products gradients inside the microcarriers seemed to be the main limitation of the system. An increase of the perfusion rate to maintain glucose concentration over 5.5 mM and dissolved oxygen (DO) at 60% was able to stimulate the production of IFN-γ to a level of 6.6 μg h−1 g−1 of microcarriers after 160 h when a cellular density of about 4 × 108 cell g−1 of carriers was reached.  相似文献   

10.
To investigate the influence of hyperosmolar basal media on hybridoma response, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in a batch mode using hyperosmolar basal media resulting from additional sodium chloride supplementation. The basal media used in this study were IMDM, DMEM, and RPMI 1640, all of which are widely used for hybridoma cell culture. In IMDM, two hybridomas showed different responses to hyperosmotic stress regarding specific MAb productivity (q MAb), though they showed similar depression of cell growth in hyperosmolar media. Unlike S3H5/γ2bA2 hybridoma, the q MAb of DB9G8 hybridoma was not enhanced significantly around 390 mOsm kg?1. The variation of basal media influenced DB9G8 hybridoma response to hyperosmotic stress regarding q MAb. In IMDM, the q MAb of DB9G8 hybridoma was increased by more than 200% when the osmolality increased from 281 to 440 mOsm/kg. However, in RPMI 1640 and DMEM, similar amplitude of osmolality increase resulted in less than 100% increase in q MAb. The variation of basal media also influenced the cell growth in hyperosmolar medium. Both hybridomas were more tolerant against hyperosmotic stress in DMEM than in IMDM, which was found to be due to the high osmolality of standard DMEM. The osmolalities of standard IMDM and DMEM used for inocula preparation were 281 and 316 mOsm kg?1, respectively. Thus, when the cells were cultivated at 440 mOsm kg?1, the cells in IMDM experienced higher osmotic shock than in DMEM. By using the inoculum prepared at 317 mOsm kg?1 in IMDM, S3H5/γ2bA2 cell growth at 440 mOsm kg?1 in IMDM was comparable to that in DMEM. Taken together, the results obtained from this study show that the selection of basal media is an important factor for MAb production by employing hyperosmotic stress.  相似文献   

11.
Keen MJ 《Cytotechnology》1995,17(3):193-202
Y0 is a rat x rat hybridoma cell line, which does not secrete immunoglobulin, produced using a fusion partner derived from the Y3 (Y3,Ag.1.2.3) rat myoloma cell line. Y0 and Y3 have both been widely used as fusion partners in the production of rat x rat hybridomas. Y0 has also been used in recombinant gene technology. Y0 cells grown in shake flask culture, using RPMI 1640 medium with 4mM l-glutamine and 5% foetal bovine serum, reached a maximal cell density of 1.5×106 cells ml–1 with 86% viability. Y0 cells which has been adapted to grow in ABC protein-free medium reached a maximal density, in shake flask culture, of 8.75×105 cells ml–1 with 79% viability. An improved protein-free medium, designated W38 medium, was developed. In shake flask culture, W38 medium supported Y0 cell growth to a density of 2.02×106 cells ml–1 with 96% viability. Two Y3 hybridomas, YID 13.9.4 cells and SAM 618 cells were adapted to growth in W38 medium. For both hybridomas, cell growth and product yield in shake flask culture using W38 medium was superior to that obtained with serum-containing RPMI 1640 medium.Abbreviations F12 Hams F12 medium - DMEM Dulbeccos medium - RPMI RPMI 1640 medium - FBS foetal bovine serum  相似文献   

12.
The concentration effects of certain amino acids (Asp, Ile, Leu, Lys, Met, Val, Phe and Gln which were highly consumed during cultivation), and glucose on cell growth and antibody productivity were investigated using dish culture. From these experiments, it was found that only glutamine enrichment enhanced the specific antibody production rate. The other amino acids described above did not affect either the specific growth rate or specific antibody production rate. Thus we investigated the quantitative effects of glutamine concentration in the range of 0.4∼33.3 mmol·1−1 on kinetic parameters in fed-batch culture which kept both glucose and glutamine concentration constant. As a result the specific growth rate decreased with increase in glutamine concentration in the range larger than 20 mmol·1−1. The specific antibody production rate had a maximum value at about 25 mmol·1−1 glutamine concentration.  相似文献   

13.
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.  相似文献   

14.
Association of the availability of nutrients with the phenomenon of programmed cell death-apoptosis-was investigated using hybridoma cells cultured in protein-free medium under conditions of starvation, i.e., in RPMl-1640 medium diluted to 50% with saline. Amino acid mixtures, such as MEM essential amino acids or MEM nonessential amino acids were found to prevent starvation death significantly when added to the diluted medium in 1 to 2 mM concentrations, the MEM vitamin mixture was ineffective, and glutamine displayed a moderate growth-supporting effect. The specific monoclonal antibody production rate in cultures supplemented with amino acid mixtures was strikingly low, whereas supplementation with glutamine alone or simultaneously with other amino acids resulted in a specific antibody production rate comparable with the rate observed in undiluted medium. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
16.
Animal cell perfusion high density culture is often adopted for the production of biologicals in industry. In high density culture sometimes the productivity of biologicals has been found to be enhanced. Especially in immobilized animal cell culture, significant increase in the productivity has been reported. We have found that the specific monoclonal antibody (MAb) productivity of an immobilized hybridoma cell is enhanced more than double. Several examples of enhancing productivities have been also shown by collagen immobilized cells. Immobilized cells involve some different points from non-immobilized cells in high density culture: In immobilized culture, some cells are contacted together, resulting in locally much higher cell concentration more than 108 cells/ml. Information originating from a cell can be easily transduced to the others in immobilized culture because the distance between cells is much nearer. Here we have performed collagen gel immobilized culture of recombinant BHK cells which produce a human IgG monoclonal antibody in a protein-free medium for more than three months. In this high density culture a stabilized monoclonal antibody production was found with around 8 times higher specific monoclonal antibody productivity compared with that in a batch serum containing culture. No higher MAb productivity was observed using a conditioned medium which was obtained from the high density culture, indicating that no components secreted from the immobilized cells work for enhancing monoclonal antibody production. The MAb productivity by the non-immobilized cells obtained by dissolving collagen using a collagenase gradually decreased and returned to the original level in the batch culture using a fresh medium. This suggests that the direct contact of the cells or a very close distance between the cells has something to do with the enhancement of the MAb productivity, and the higher productivity is kept for a while in each cell after they are drawn apart.  相似文献   

17.
This study aimed to evaluate the influence of magnetic fields (MF) on inoculum cultivation and carotenoid production by Phaffia rhodozyma. The application of MF in the inoculum culture was evaluated (0 m T – control and 30 m T). Cellular concentration increased by 12.8 % after 24 h-culture with MF application compared to the control assay, and this was the best alternative for the preparation of inoculum. Different intervals of MF application were evaluated over 168 h. The highest volumetric carotenoids concentration was achieved by applying MF throughout cultivation, with values of 1146.39 ± 26.18 μg L−1 and carotenoid productivity of 11.94 ± 1.11 μg L−1 h−1 in 96 h. As a result, carotenoid production increased by 59.4 % and carotenoid productivity by 99.3 %. This study is one of the first to consider MF application in carotenoid production using P. rhodozyma as a viable and low-cost alternative for carotenoid production in a shorter cultivation time.  相似文献   

18.
The cystine-glutamate antiporter (system xc -) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc - expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc - in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc - is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc - inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc -. Human glioma cells were chosen based on their high system xc - activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of cystine uptake and glutamate release previously reported in normal human fibroblast cells.  相似文献   

19.
An integrated high-throughput screening (HTS) strategy was developed to screen large numbers of polymyxin E-producing mutants of Paenibacillus polymyxa. Various types of mutants were transferred onto the surfaces of solidified agar in 96-well microtiter plates, and then inoculated to 96-deep-well microtiter plates for micro-cultivation. The culture conditions were optimized for the production of polymyxin E. The supernatants from the micro-culture plates were transferred to 96-well bioassay microtiter plates containing Escherichia coli JM109 for high-throughput bioassay. By using this high-throughput screening (HTS) procedure, one best producer P. polymyxa PE 5.808 was identified from a large NTG mutated library with about 5,000 isolates. The volumetric productivity of polymyxin E of P. polymyxa PE 5.808 was 1,200 μg/ml in shake flasks, about 140% improvement compared with that of the wild type strain.  相似文献   

20.
To assess the cytotoxic activity of immune cells, we have developed a51Cr-retention assay in which the radioactivity retained by51Cr-labeled target cells, following coincubation with cytotoxic cells, is monitored using the automated Matrix 96 beta counter. The Matrix 96 is designed for simultaneously counting 96 samples isolated from a 96-well microplate. It uses 96 uniform and independent detectors operating on the principle of avalanche gas ionization in the Geiger-Muller mode. Samples must be dry because the detectors are of the open-window type. Therefore, samples from the 96 wells of the microplate are simultaneously harvested onto a filter using the MicroMate 196, a 96-well cell harvester, dried and quantified in the Matrix 96. Usually the51Cr isotope is measured by the detection of gamma radiation in gamma counters. The Matrix 96, however, monitors Auger electrons, which are also emitted by51Cr. We have shown that the retention assay can be used to monitor the cytotoxic activity of activated lymphocytes including lymphokine-activated killer cells and tumor-infiltrating lymphocytes against various tumor cell lines. This assay is most suitable for experiments in which low E/T ratios are sufficient to detect highly cytotoxic cells, such as clone screening in cloning assays or in limiting-dilution analysis assays. These assays involve processing and reading large numbers of microplates. In this case, the retention assay monitored in the Matrix 96 will improve the work flow and decrease the amount of radioactive waste.This work was supported by the American Cancer Society grant IN-162-C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号