首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mustard (Brassica juncea L. Czern and Coss.) cvs. Pusa Jai Kisan (with low-affinity S transporter (LAT) system) and Pusa Bold (with dual, low- and high-affinity transporters (LAT + HAT) system) were supplied with 0 or 1 mM S in hydroponics culture, and the coordinate changes in growth traits (plant dry weight and leaf area), photosynthetic traits (photosynthetic rate, intercellular CO2, F v/F m, and chlorophyll content), activities of key enzymes of sulfur metabolism, such as ATP-sulfurylase (ATP-S), serine acetyltransferase (SAT), and glutathione reductase (GR), and the contents of cysteine (Cys) and glutathione (GSH) were studied in 30 days after sowing. The results showed that cv. Pusa Jai Kisan was more sensitive to S deprivation than cv. Pusa Bold. In cv. Pusa Jai Kisan, S deprivation resulted in a stronger decrease of plant growth and photosynthetic traits, Cys and GSH contents, and a notable decline in activity of ATP-S. S deprivation up-regulated GR activity to a greater extent in cv. Pusa Bold. In contrast, despite the activity of SAT, an enzyme involved in the final step of Cys biosynthesis, was increased in cv. Pusa Jai Kisan stronger than in cv. Pusa Bold under S-deprivation, it could not be translated into the increase in Cys and, thus, GSH contents and a consequent improvement in growth and photosynthesis. The study demonstrated that cv. Pusa Bold (with LAT + HAT) can be a promising cultivar for activation of Cys and/or GSH biosyntheses and increased plant tolerance to S-deprivation conditions.  相似文献   

2.
Drought was induced in chickpea (Cicer arietinum L.) genotypes (ChK 3226 and ILC 3279) differing in yield capacity. Water stress (S1, RWC around 55–50%; S2, RWC ≤ 40%) drastically reduced stomatal conductance (g s) and net photosynthetic rate (P N) in both genotypes. ILC 3279 showed greater photosynthetic capacity (A max) decreases. Maximum PSII photochemical efficiency (Fv/Fm), photochemical quenching (qP), total chlorophylls (Chls) and carotenoids (Cars) content showed stability in both genotypes under stress, but in S2 ILC 3279 presented an increase in basal fluorescence (F0) and a greater reduction in estimation of quantum yield of linear electron transport (Φe) than ChK 3226. Membrane damage evaluated by electrolyte leakage occurred earlier and was greater in ILC 3279. It also presented a decrease of total fatty acids (TFA) along drought, while in ChK 3226 greater amounts of TFA were observed in S1. In rehydration, P N of S1 plants completely recovered (ILC 3279) or remained slightly below control (ChK 3226). As regards S2 plants, ILC 3279 showed stronger P N and g s reductions than ChK 3226, despite both genotypes totally recovered A max and chlorophyll (Chl) a fluorescence. ChK 3226 recovered more efficiently from membrane damage. Under control conditions, greater amounts of most of the studied soluble metabolites occurred in ChK 3226 plants. Malate and citrate decreased with water stress (S2) in both genotypes. Sucrose and pinitol (that had a higher concentration than sucrose in both genotypes) increased in ILC 3279 (S1 and S2), and decreased in ChK 3226 (S2). In ILC 3279 proline and asparagine followed similar patterns. Genotypes showed a similar shoot dry mass (DM) in control plants, but root DM was higher in ChK 3226. Drought reduced root and shoot DM in ChK 3226 already under S1, while in ILC 3279 root DM was unaffected by drought and shoot biomass decreased only in S2. Root/shoot ratio was always higher in ChK 3226 but tended to decrease under stress, while the opposite was observed in ILC 3279. No pods were obtained from control plants of both genotypes, or droughted ILC 3279 plants. ChK 3226 produced pods under S1 (higher yield) and S2. Under stress conditions, ChK 3226 was less affected in photosynthetic activity and membrane integrity, showing a better tolerance to drought. This agrees with the better yield of this genotype under water stress. Distinct strategies seem to underlie the different physiological responses of the two genotypes to water deficit. In spite of its significant solutes accumulation, ILC 3279 was more affected in photosynthetic activity and membrane integrity during water stress than ChK 3226, which showed better yield under drought. A relation could not be established between solutes accumulation of ILC 3279 and yield.  相似文献   

3.
Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na+ and Cl content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na+ and Cl content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.  相似文献   

4.
Khan  N.A. 《Photosynthetica》2004,42(3):477-480
The pattern of activity of 1-aminocyclopropane carboxylic acid synthase (ACS) was similar to photosynthetic and growth traits observed at 30, 45, and 60 d after sowing in mustard (Brassica juncea L.) cultivars Varuna and RH 30 differing in photosynthetic capacity. Higher activity of ACS and therefore ethylene release in Varuna than RH 30 increased stomatal conductance, intercellular CO2 concentration, carboxylation rate (carbonic anhydrase and intrinsic water use efficiency), and thus net photosynthetic rate (P N) and leaf and plant dry masses (DM) at all sampling times. Moreover, Varuna also had larger leaf area which contributed to higher P N and DM. A positive correlation between ACS activity and P N and leaf area was found in both the cultivars. Thus ACS activity may affect P N through ethylene-induced changes on foliar gas exchange and leaf growth.  相似文献   

5.
Activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) is an important parameter determining the rate of net photosynthesis (P N) in situ for which no information is available with reference to altitude. We analyzed activation state along with P N in three plant species and their cultivars grown at low (LA, 1 300 m) and high (HA, 4 200 m) altitudes. No significant change in P N and the initial activity of RuBPCO was obtained with reference to altitude. However, activation state of RuBPCO was reduced significantly in the HA plants as compared to the LA ones. Hence low partial pressure of CO2 prevailing at HA might be responsible for the lower activation state of RuBPCO.  相似文献   

6.
The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer’s recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.  相似文献   

7.
Field experiments were conducted to determine the effect of sulfur (S) and Nitrogen (N) on nitrate reductase (NR) and ATP-sulfurylase activities in groundnut cultivars (Arachis hypogea L. cv. Ambar and Kaushal). Two combinations of S (in kg ha-1): OS (-S) and 20S (+S) were used with 20 kg ha-1 N. The application of S enhanced the NR and ATP-sulfurylase activities in both the cultivars at all the growth stages. The application of S also increased soluble protein and chlorophyll content in the all growth stages of both the cultivars. NR and ATP-sulfurylase activities in the leaves were measured at various growth stages as the two enzymes catalyze the rate limiting steps of the assimilatory pathways of nitrate and sulfate, respectively.  相似文献   

8.
Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N2-dependent or NO3-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO3-supplied plants in both cultivars had lower starch accumulation rates than N2-dependent plants. Leaf extracts of NO3-supplied plants had higher activities of sucrose phosphate synthase (SPS) and cytoplasmic fructose-1,6-bisphosphatase (FBPase) than N2-dependent plants. The variation in starch accumulation was correlated negatively with the activity of SPS, but not the activity of FBPase, UDP-glucose pyrophosphorylase, or ADP-glucose pyrophosphorylase. These results suggested that starch accumulation is biochemically controlled, in part, by the activity of SPS. Leaf starch content at the beginning of the photoperiod was lower in NO3-supplied plants than N2-dependent plants in both cultivars which suggested that net starch utilization as well as accumulation was affected by N source.

Total dry matter accumulation and dry matter distribution was affected by N source in both cultivars, but the cultivars differed in how dry matter was partitioned between the shoot and root as well as within the shoot. The activity of SPS was correlated positively with total dry matter accumulation which suggested that SPS activity is related to plant growth rate. The results suggested that photosynthate partitioning is an important but not an exclusive factor which determines whole plant dry matter distribution.

  相似文献   

9.
To assess the interactions between concentration of atmospheric CO2 and N supply, the response of Plantago major ssp. pleiosperma Pilger to a doubling of the ambient CO2 concentration of 350 µl l?1 was investigated in a range of exponential rates of N addition. The relative growth rate (RGR) as a function of the internal plant nitrogen concentration (Ni), was increased by elevated CO2 at optimal and intermediate Ni. The rate of photosynthesis, expressed per unit leaf area and plotted versus Ni. was increased by 20-30% at elevated CO2 for Ni above 30 mg N g?1 dry weight. However, the rate of photosynthesis, expressed on a leaf dry matter basis and plotted versus Ni, was not affected by the CO2 concentration. The allocation of dry matter between shoot and root was not affected by the CO2 concentration at any of the N addition rates. This is in good agreement with theoretical models. based on a balance between the rate of photosynthesis of the shoot and the acquisition of N by the roots. The concentration of total nonstructural carbohydrates (TNC) was increased at elevated CO2 and at N limitation, resulting in a shift in the partitioning of photosynthates from structural to nonstructural and, in terms of carbon balance, unproductive dry matter. The increase in concentration of TNC led to a decrease in both specific leaf area (SLA) and Ni at all levels of nutrient supply, and was the cause of the increased rate of photosynthesis per unit leaf area. Correction of the relationship between RGR and Ni for the accumulation of TNC made the effect of elevated CO2 on the relationship between RGR and Ni disappear. We conclude that the shift in the relationship between RGR and Ni was due to the accumulation of TNC and not due to differences in physiological variables such as photosynthesis and shoot and root respiration, changes in leaf morphology or allocation of dry matter.  相似文献   

10.
The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (P N), mesophyll conductance (g m), and stomatal conductance (g s) decreased. P N was more dominantly restricted by g m than g s. The values of P N, g m, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high P N and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input.  相似文献   

11.
Cadmium is known to reduce photosynthesis and overall growth of plants. Plants adopt several mechanisms of Cd detoxification, such as accumulation of sulfur-rich compounds, like glutathione (GSH) and its precursor cysteine. The accumulation of GSH is regulated by the activity of ATP-sulfurylase, a rate-limiting enzyme in sulfur assimilation. The carbon of Cys is provided through photosynthesis. Thus, a plant with the higher photosynthetic potential and ATP-sulfurylase activity may have the higher contents of Cys and GSH and therefore may provide for a greater tolerance to Cd stress. Mustard (Brassica juncea L. Czern and Coss.) cvs. Varuna (high photosynthetic potential) and RH30 (low photosynthetic potential) were subjected to 0 and 200 mg Cd/kg soil, and the activity of ATP-sulfurylase, the contents of Cys and GSH, oxidative stress, and activities of antioxidant enzymes were studied. Under 200 mg Cd/kg soil, cv. Varuna showed an increased ATP-sulfurylase activity, the higher contents of Cys and GSH, and the net photosynthetic rate than cv. RH30. In contrast, the activity of superoxide dismutase, the contents of thiobarbituric acid-reactive substances, and H2O2, and electrolyte leakage were found to be greater in cv. RH30 showing an increased oxidative stress than cv. Varuna. However, the activities of ascorbate peroxidase and glutathione reductase were greater in cv. Varuna than cv. RH30. The results show that a greater ATP-sulfurylase activity, an enhanced production of Cys and GSH, and an efficient antioxidant enzyme system in the high photosynthetic mustard cv. Varuna helped to the reduce the oxidative stress maintaing high photosynthesis.  相似文献   

12.
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g?1 dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.  相似文献   

13.
Changes in photosynthetic performance, osmolyte accumulation and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and polyphenol oxidase (PPO) were investigated in one-year-old olive cultivars (Chemlali, Meski and Picholine) subjected to contrasting water availability regimes under arid climatic conditions in Tunisia. Shoot elongation rates (SER) and photosynthetic performance were markedly reduced by the water deficit regime (WD) in all cultivars except for Chemlali, which proved to be superior to the other two cultivars with respect to drought tolerance. Higher photosynthetic performance (net photosynthesis (Pn), stomatal conductance (gs) and transpiration rates (E)) in the Chemlali and Meski cvs. compared to Picholine olive allowed them to maintain better plant water status and shoot elongation rates. Under WD conditions, Chemlali showed a greater capability for proline accumulation. Leaves grown under WD conditions showed signs of oxidative stress such as reduced chlorophyll and carotenoid concentrations. Nevertheless, different cultivars developed certain antioxidative defense mechanisms, including elevated SOD, APX and CAT activities. In contrast, PPO activity decreased under WD circumstances. Comparatively, Chemlali olive displayed better antioxidative enzyme activity, and thus better protection against oxidative stress. These results show that the ability of olive trees to up-regulate the enzymatic antioxidative system might be an important attribute linked to drought tolerance. These findings demonstrate that the association of higher Pn, proline accumulation and antioxidative defenses could be effective in a water-limited environment and may be useful selection criteria in breeding programs with the objective of improving drought tolerance and growth of olive trees, at least under the described environmental conditions.  相似文献   

14.
Field experiments were conducted to determine the interactive effect of sulfur (S) and nitrogen (N) applications on seed yield fromPsoralea corylifolia L. Six treatments were tested: T1 = control (without manure and fertilizers), T2 = manure @ 9 kg plot-1 (10 t ha-1), T3 = S0 N20 Ko P40, T4 = S20 N20 K40 P40, T5 = S20+20 N20 K40 P40, and T6 = S20+20 N20+20 K40P40. Activities of nitrate reductase (NR) and ATP-sulfurylase in the leaves were measured at various phenological stages. These two enzymes catalyze the rate-limiting steps in the respective assimilatory pathways for nitrate and sulfate. Enzyme activity was strongly correlated with seed yield, with the greatest performance being achieved with treatment T5. This might be attributed to the optimization of leaf soluble protein and photosynthetic rate, both of which are influenced by S and N assimilation.  相似文献   

15.
The influence of increasing salinity stress on plant growth, antioxidant enzymes and proline metabolism in two cultivars of Vigna radiata L. (cv. Pusa Bold and cv. CO 4) was investigated. Salt stress was imposed on 30-days-old cultivars with four different concentrations of NaCl (0, 100, 200 and 300 mM). The roots and shoots of CO 4 showed greater reduction in fresh weight, dry weight and water content when compared to Pusa Bold with increasing salt stress. Under salinity stress, the roots and shoots of CO 4 exhibited higher Na+: K+ ratio than Pusa Bold. The activities of reactive oxygen species (ROS) scavenging enzymes and reduced glutathione (GSH) concentration were found to be higher in the leaves of Pusa Bold than in CO 4, whereas oxidized glutathione (GSSG) concentration was found to be higher in the leaves of CO 4 compared to those in Pusa Bold. Our studies on oxidative damage in two Vigna cultivars showed lower levels of lipid peroxidation and H2O2 concentration in Pusa Bold than in CO 4 under salt stress conditions. High accumulation of proline and glycine betaine under salt stress was also observed in Pusa Bold when compared to CO 4. The activities of proline biosynthetic enzymes were significantly high in Pusa Bold. However, under salinity stress, Pusa Bold showed a greater decline in proline dehydrogenase (ProDH) activity compared to CO 4. Our data in this investigation demonstrate that oxidative stress plays a major role in salt-stressed Vigna cultivars and Pusa Bold has efficient antioxidative characteristics which could provide better protection against oxidative damage in leaves under salt-stressed conditions.  相似文献   

16.
The seedlings of wheat were treated by salt-stress (SS, molar ratio of NaCl: Na2SO4 = 1: 1) and alkali-stress (AS, molar ratio of NaHCO3: Na2CO3 = 1: 1). Relative growth rate (RGR), leaf area, and water content decreased with increasing salinity, and the extents of the reduction under AS were greater than those under SS. The contents of photosynthetic pigments did not decrease under SS, but increased at low salinity. On the contrary, the contents of photosynthetic pigments decreased sharply under AS with increasing salinity. Under SS, the changes of net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were similar and all varied in a single-peak curve with increasing salinity, and they were lower than those of control only at salinity over 150 mM. Under AS, P N, g s, and E decreased sharply with rising salinity. The decrease of g s might cause the obvious decreases of E and intercellular CO2 concentration, and the increase of water use efficiency under both stresses. The Na+ content and Na+/K+ ratio in shoot increased and the K+ content in shoot decreased under both stresses, and the changing extents under AS were greater than those under SS. Thus SS and AS are two distinctive stresses with different characters; the destructive effects of AS on the growth and photosynthesis of wheat are more severe than those under SS. High pH is the key feature of the AS that is different from SS. The buffer capacity is essentially the measure of high pH action on plant. The deposition of mineral elements and the intracellular unbalance of Na+ and K+ caused by the high pH at AS might be the reason of the decrease of P N and g s and of the destruction of photosynthetic pigments.  相似文献   

17.
Summary Experiments were conducted to determine if changes in the accumulation and partitioning of dry matter (DM) and nitrogen (N) in soybean [Glycine max (L.) Merr.] were associated with agronomic improvements and to assess the degree of genetic variation present for these traits. Fifteen maturity group II soybean genotypes including three ancestral cultivars, three modern cultivars, and nine agronomically superior plant introductions (PI's) were grown in replicated tests at four locations in the eastern U.S. The DM and N of stems, pod walls, and seeds were determined at maturity, and the apparent harvest indices (HI) and the apparent nitrogen harvest indices (NHI) were calculated. Pod DM partitioning was calculated as the ratio of seed DM to total pod DM and pod N partitioning was the ratio of seed N to total pod N. The mean DM accumulation of the modern cultivars was significantly greater than that of the ancestral cultivars and PI's. The apparent HI and the pod DM partitioning of both the modern and ancestral cultivars were significantly higher than that of the PI's. The three modern cultivars demonstrated the highest N accumulation. As a group, the modern cultivars consistently showed maximal accumulation and partitioning of DM and N suggesting that these physiological traits are associated with agronomic improvement. No individual PI was found to possess DM or N accumulation or partitioning which significantly exceeded the best modern cultivar or ancestral cultivar, indicating that genotypes with accumulation or partitioning characteristics which exceed available germplasm may be difficult to identify. Seed yield was correlated (P<0.05) with both DM (r=0.61) and N (r=0.57) accumulation.  相似文献   

18.
Muranaka  S.  Shimizu  K.  Kato  M. 《Photosynthetica》2002,40(2):201-207
The effects of iso-osmotic salinity and drought stresses on leaf net photosynthetic rate (P N) in two wheat (Triticum aestivum L.) cultivars BR 8 and Norin 61, differing in drought tolerance, were compared. In drought-sensitive Norin 61, the decline of P N was larger than that in drought-tolerant BR 8. Under NaCl treatment, P N decreased in two phases similarly in both cultivars. In the first phase, photosynthetic depression was gradual without any photochemical changes. In the second phase, photosynthetic depression was rapid and accompanied with a decline of the energy conversion efficiency in photosystem 2 (PS2). Our observations suggest that the osmotic factor may induce a gradual depression of photosynthesis due to stomatal closure under both stress treatments. However, under NaCl treatment, a ionic factor (uptake and accumulation of excess Na+) may have direct effects on electron transport and cause more severe photosynthetic depression. The drought tolerance mechanism of BR 8 was insufficient to maintain single-leaf photosynthesis under salinity.  相似文献   

19.
不同施氮水平对巨桉幼树耐旱生理特征的影响   总被引:1,自引:0,他引:1  
采用盆栽方法,研究了巨桉幼树在N0(不施氮)、N1(1.4g尿素·盆-1)、N2(2.8g尿素·盆-1)3个氮处理水平下,连续干旱不同时间[分别停水0(D0)、3、6、9、12、15、18d]时巨桉的生理响应。结果显示:(1)除D0外,试验期内N1和N2处理的巨桉叶片含水量(LWC)、叶片相对含水量(LRWC)和叶片保水力(LWHC)基本低于N0水平,尤其在干旱中期最为明显,表明在干旱胁迫前施氮可能对巨桉叶片水分生理产生负面作用。(2)干旱初期,氮处理间的可溶性蛋白(SP)和可溶性糖(SS)含量的差异不大,而干旱处理后期(9~18d),N0处理的SP和SS较初期明显增加,但N1和N2处理相对于N0变化较为平缓,表明施氮不利于SP和SS积累;N1和N2处理下脯氨酸(Pro)含量的增幅随着干旱胁迫时间的延长明显大于N0处理。(3)随干旱时间延长干旱程度加重,N1、N2处理巨桉叶片过氧化氢(H2O2)和丙二醛(MDA)含量明显高于N0处理,表明施氮使得巨桉在干旱条件下水分缺乏更为严重,产生更多的活性氧(ROS)。(4)整个干旱处理期内,施氮并未显著改变巨桉的超氧化物歧化酶(SOD)活性和抗坏血酸(AsA)含量,但N1和N2的过氧化物酶(POD)活性明显高于N0。(5)施氮增加了巨桉叶片的色素含量并在干旱初期和中期保持较高水平,在干旱初期(0~3d)增加了巨桉叶片的净光合速率(Pn),但随着干旱时间的延长而迅速下降;施氮(N1、N2)的蒸腾速率(Tr)和气孔导度(Gs)在干旱初期均显著小于N0,但在干旱中后期(6d以后)各处理间差异不显著且均处于极低水平。研究表明,水分充足时施氮有助于增强巨桉的光合同化能力,促进其生长,但遇到持续干旱时施氮更易面临水分亏缺,降低其抵抗干旱的能力,因此在巨桉人工林的经营管理过程中,不应在干旱或季节性干旱即将到来之前施氮,若干旱过程中需施氮则应采取灌溉等途径保证其充足的水分供应。  相似文献   

20.
Sulfur (S) assimilation results in the synthesis of cysteine (Cys), a common metabolite for the formation of both reduced glutathione (GSH) and ethylene. Thus, ethylene may have regulatory interaction with GSH in the alleviation of salt stress. The involvement of ethylene in the alleviation of salt stress by S application was studied in mustard (Brassica juncea cv. Pusa Jai Kisan). First, the effects of 0, 0.5, 1.0 and 2.0 mM SO42? were studied on photosynthetic and growth parameters to ascertain the S requirement as sufficient‐S and excess‐S for the plant. In further experiments, the effects of sufficient‐S (1 mM SO42?) and excess‐S (2 mM SO42?) were studied on the alleviation of salt stress‐induced by 100 mM NaCl, and ethylene involvement in the alleviation of salt stress by S. Under non‐saline condition, excess‐S increased ethylene with less content of Cys and GSH and adversely affected photosynthesis and growth. In contrast, excess‐S maximally alleviated salt stress due to high demand for S and optimal ethylene formation, which maximally increased GSH and promoted photosynthesis and growth. The involvement of ethylene in S‐mediated alleviation of salt stress was further substantiated by the reversal of the effects of excess‐S on photosynthesis by aminoethoxyvinylglycine (AVG), ethylene biosynthesis inhibitor. The studies suggest that plants respond differentially to the S availability under non‐saline and salt stress and excess‐S was more potential in the alleviation of salt stress. Further, ethylene regulates plants' response and excess S‐induced alleviation of salt stress and promotion of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号