首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Peng M  Gao M  Båga M  Hucl P  Chibbar RN 《Plant physiology》2000,124(1):265-272
Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 microm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 microm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 microm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (x Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution.  相似文献   

2.
Cloning and characterization of a gene encoding wheat starch synthase I   总被引:4,自引:0,他引:4  
 A cDNA clone, and a corresponding genomic DNA clone, containing full-length sequences encoding wheat starch synthase I, were isolated from a cDNA library of hexaploid wheat (Triticum aestivum) and a genomic DNA library of Triticum tauschii, respectively. The entire sequence of the starch synthase-I cDNA (wSSI-cDNA) is 2591 bp, and it encodes a polypeptide of 647 amino-acid residues that shows 81% and 61% identity to the amino-acid sequences of SSI-type starch synthases from rice and potato, respectively. In addition, the putative N-terminal amino-acid sequence of the encoded protein is identical to that determined for the N-terminal region of the 75-kDa starch synthase present in the starch granule of hexaploid wheat. Two prominent starch synthase activities were demonstrated to be present in the soluble fraction of wheat endosperm by activity staining of the non-denaturing PAGE gels. The most anodal band (wheat SSI) shows the highest staining intensity and results from the activity of a 75-kDa protein. The wheat SSI mRNA is expressed in the endosperm during the early to mid stages of wheat grain development but was not detected by Northern blotting in other tissues from the wheat plant. The gene encoding the wheat SSI (SsI-D1) consists of 15 exons and 14 introns, similar to the structure of the rice starch synthase-I gene. While the exons of wheat and rice are virtually identical in length, the wheat SsI-D1 gene has longer sequences in introns 1, 2, 4 and 10, and shorter sequences in introns 6, 11 and 14, than the corresponding rice gene. Received: 5 June 1998 / Accepted: 29 September 1998  相似文献   

3.
A starch granule protein, SGP-1, is a starch synthase bound to starch granules in wheat endosperm. A wheat lacking SGP-1 was produced by crossing three variants each deficient in one of three SGP-1 classes, namely SGP-A1, -B1 or -D1. This deficient wheat (SGP–1 null wheat) showed some alterations in endosperm starch, meaning that SGP-1 is involved in starch synthesis. Electrophoretic experiments revealed that the levels of two starch granule proteins, SGP-2 and -3, decreased considerably in the SGP-1 null wheat though that of the waxy protein (granule-bound starch syn- thase I) did not. The A-type starch granules were deformed. Apparent high amylose level (30.8–37.4%) was indicated by colorimetric measurement, amperometric titration, and the concanavalin A method. The altered structure of amylopectin was detected by both high- performance size-exclusion chromatography and high-performance anion exchange chromatography. Levels of amylopectin chains with degrees of polymerization (DP) 6–10 increased, while DP 11–25 chains decreased. A low starch crystallinity was shown by both X-ray diffraction and differential scanning calorimetry (DSC) analyses because major peaks were absent. Abnormal crystallinity was also suggested by the lack of a polarized cross in SGP-1 null starch. The above results suggest that SGP-1 is responsible for amylopectin synthesis. Since the SGP-1 null wheat produced novel starch which has not been described before, it can be used to expand variation in wheat starch. Received: 30 April 1999 / Accepted: 9 November 1999  相似文献   

4.
Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.  相似文献   

5.
6.
7.
Screening of a wheat (Triticum aestivum) cDNA library for starch-branching enzyme I (SBEI) genes combined with 5'-rapid amplification of cDNA ends resulted in isolation of a 4,563-bp composite cDNA, Sbe1c. Based on sequence alignment to characterized SBEI cDNA clones isolated from plants, the SBEIc predicted from the cDNA sequence was produced with a transit peptide directing the polypeptide into plastids. Furthermore, the predicted mature form of SBEIc was much larger (152 kD) than previously characterized plant SBEI (80-100 kD) and contained a partial duplication of SBEI sequences. The first SBEI domain showed high amino acid similarity to a 74-kD wheat SBEI-like protein that is inactive as a branching enzyme when expressed in Escherichia coli. The second SBEI domain on SBEIc was identical in sequence to a functional 87-kD SBEI produced in the wheat endosperm. Immunoblot analysis of proteins produced in developing wheat kernels demonstrated that the 152-kD SBEIc was, in contrast to the 87- to 88-kD SBEI, preferentially associated with the starch granules. Proteins similar in size and recognized by wheat SBEI antibodies were also present in Triticum monococcum, Triticum tauschii, and Triticum turgidum subsp. durum.  相似文献   

8.
Wheat (Triticum aestivum L.) starch synthase II, which is also known as starch granule protein 1 (SGP-1), plays a major role in endosperm starch synthesis. The three SGP-1 proteins, SGP-A1, B1 and D1, are produced by three homoeologous SSII genes, wSSII-A, B, and D. Lines carrying null alleles for each SGP-1 protein have previously been identified. In this report, the mutations occurring in each wSSII gene were characterized, and PCR-based DNA markers capable of detecting the mutations were developed. In the null wSSII-A allele, a 289 bp deletion accompanied by 8 bp of filler DNA was present near the initiation codon. A 175 bp insertion occurred in exon 8 of the null wSSII-B allele. The insertion represented a recently discovered miniature inverted-repeat transposable element (MITE) named Hikkoshi that was first found in a wheat waxy gene. A 63 bp deletion was found at the region surrounding the junction of the fifth exon and intron of the null wSSII-D allele. Based on this information, we designed primer sets to enable us to conduct allele-specific amplifications for each locus. The applicability of these primer sets for breeding programs was demonstrated by reconstructing a line lacking all three SGP-1 proteins using marker-assisted selection. These markers will also be useful in breeding programs aimed at obtaining partial mutants missing one or two SGP-1 proteins.  相似文献   

9.
Wheat and barley contain at least four classes of starch synthases in the endosperm, granule bound starch synthase I (GBSSI) and starch synthases I, II and III (SSI, SSII, SSIII). In this work, SSII in barley is shown to be associated with the starch granule by using antibodies. A cDNA from barley encoding SSII and the genes for SSII from barley and Aegilops tauschii (A. tauschii, the D genome donor to wheat) are characterised. Fluorescent in situ hybridisation (FISH) and PCR were used to localise the wheat SSII gene to the short arm of chromosome 7, showing synteny with the location of the rice SSII gene to the short arm of chromosome 6. Comparison of the genes encoding SSII of A. tauschii, barley and Arabidopsis showed a conserved exon-intron structure although the size of the introns varied considerably. Extending such comparison between the genes encoding starch synthases (GBSSI, SSI, SSII and SSIII) from A. tauschii and Arabidopsis showed that the exon-intron structures are essentially conserved. Separate and distinct genes for the individual starch synthases therefore existed before the separation of monocotyledons and dicotyledons. Electronic Publication  相似文献   

10.
A cDNA clone (WL : AGA.1) encoding wheat leaf ADP-glucose pyrophosphorylase has been isolated from a gt11 expression library, by immunological screening with anti-spinach leaf ADP-glucose pyrophosphorylase serum. The WL : AGA.1 cDNA is 948 bp long and contains approximately 55% of the complete wheat leaf ADP-glucose pyrophosphorylase mRNA sequence, estimated from Northern blot experiments. A wheat endosperm cDNA library was subsequently constructed in gt11 and six clones hybridising to the cDNA insert of clone WL : AGA.1 were isolated. The longest of these wheat endosperm ADP-glucose pyrophosphorylase cDNAs, clone WE : AGA.7, is nearly full-length (1798 bp), indicated by Northern blot analysis of wheat endosperm mRNA and nucleotide sequence analysis.Southern hybridisation analysis and restriction enzyme mapping indicated that the wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs and genes are members of two distinct gene families. In addition, restriction enzyme mapping revealed polymorphism in the wheat endosperm ADP-glucose pyrophosphorylase cDNAs, indicating the existence of at least two wheat endosperm ADP-glucose pyrophosphorylase gene sub-families.Subsequent nucleotide sequence analysis indicates that there is approximately 55% identity between wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs. In contrast, members of each sub-family of endosperm cDNA, represented by clones WE : AGA.3 and WE : AGA.7, are 96% identical.  相似文献   

11.
12.
Three forms of soluble starch synthase were resolved by anion-exchange chromatography of soluble extracts from immature rice (Oryza sativa L.) seeds, and each of these forms was further purified by affinity chromatograph. The 55-, 57-, and 57-kD proteins in the three preparations were identified as candidates for soluble starch synthase by western blot analysis using an antiserum against rice granule-bound starch synthase. It is interesting that the amino-terminal amino acid sequence was identical among the three proteins, except that the 55-kD protein lacked eight amino acids at the amino terminus. Thus, these three proteins are products of the same gene. The cDNA clones coding for this protein have been isolated from an immature rice seed library in lambda gt11 using synthetic oligonucleotides as probes. The deduced amino acid sequence of this protein contains a lysine-X-glycine-glycine consensus sequence for the ADP-glucose-binding site of starch and glycogen synthases. Therefore, we conclude that this protein corresponds to a form of soluble starch synthase in immature rice seeds. The precursor of the enzyme contains 626 amino acids, including a 113-residue transit peptide at the amino terminus. The mature form of soluble starch synthase shares a significant but low sequence identity with rice granule-bound starch synthase and Escherichia coli glycogen synthase. However, several regions, including the substrate-binding site, are highly conserved among these three enzymes. Blot hybridization analysis demonstrates that the gene encoding soluble starch synthase is a single-copy gene in the rice genome and is expressed in both leaves and immature seeds. These results suggest that soluble and granule-bound starch synthases play distinct roles in starch biosynthesis of plant.  相似文献   

13.
Starch phosphorylase (Pho) catalyses the reversible transfer of glucosyl units from glucose1-phosphate to the non-reducing end of an α-1,4-linked glucan chain. Two major isoforms of Pho exist in the plastid (Pho1) and cytosol (Pho2). In this paper it is proposed that Pho1 may play an important role in recycling glucosyl units from malto-oligosaccharides back into starch synthesis in the developing wheat endosperm. Pho activity was observed in highly purified amyloplast extracts prepared from developing wheat endosperms, representing the first direct evidence of plastidial Pho activity in this tissue. A full-length cDNA clone encoding a plastidial Pho isoform, designated TaPho1, was also isolated from a wheat endosperm cDNA library. The TaPho1 protein and Pho1 enzyme activity levels were shown to increase throughout the period of starch synthesis. These observations add to the growing body of evidence which indicates that this enzyme class has a role in starch synthesis in wheat endosperm and indeed all starch storing tissues.  相似文献   

14.
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.  相似文献   

15.
Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule.  相似文献   

16.
Grain filling and grain development are essential biological processes in the plant’s life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.  相似文献   

17.
18.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs. Sequence comparisons showed the existence of two classes of RGP proteins, designated RGP1 and RGP2. Glucosylation activity of RGP1 and RGP2 from wheat and rice was studied. After separate expression of Rgp1 and Rgp2 in Escherichia coli or yeast (Saccharomyces cerevisiae), only RGP1 showed self-glucosylation. In Superose 12 fractions from wheat endosperm extract, a polypeptide with a molecular mass of about 40 kD is glucosylated by UDP-glucose. Transgenic tobacco (Nicotiana tabacum) plants, overexpressing either wheat Rgp1 or Rgp2, were generated. Subsequent glucosylation assays revealed that in RGP1-containing tobacco extracts as well as in RGP2-containing tobacco extracts UDP-glucose is incorporated, indicating that an RGP2-containing complex is active. Gel filtration experiments with wheat endosperm extracts and extracts from transgenic tobacco plants, overexpressing either wheat Rgp1 or Rgp2, showed the presence of RGP1 and RGP2 in high-molecular mass complexes. Yeast two-hybrid studies indicated that RGP1 and RGP2 form homo- and heterodimers. Screening of a cDNA library using the yeast two-hybrid system and purification of the complex by an antibody affinity column did not reveal the presence of other proteins in the RGP complexes. Taken together, these results suggest the presence of active RGP1 and RGP2 homo- and heteromultimers in wheat endosperm.  相似文献   

19.
20.
In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号