首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amidase acting on (R,S)-piperazine-2-tert-butylcarboxamide was purified from Pseudomonas sp. MCI3434 and characterized. The enzyme acted R-stereoselectively on (R,S)-piperazine-2-tert-butylcarboxamide to yield (R)-piperazine-2-carboxylic acid, and was tentatively named R-amidase. The N-terminal amino acid sequence of the enzyme showed high sequence identity with that deduced from a gene named PA3598 encoding a hypothetical hydrolase in Pseudomonas aeruginosa PAO1. The gene encoding R-amidase was cloned from the genomic DNA of Pseudomonas sp. MCI3434 and sequenced. Analysis of 1332 bp of the genomic DNA revealed the presence of one open reading frame (ramA) which encodes the R-amidase. This enzyme, RamA, is composed of 274 amino acid residues (molecular mass, 30 128 Da), and the deduced amino acid sequence exhibits homology to a carbon-nitrogen hydrolase protein (PP3846) from Pseudomonas putida strain KT2440 (72.6% identity) and PA3598 protein from P. aeruginosa strain PAO1 (65.6% identity) and may be classified into a new subfamily in the carbon-nitrogen hydrolase family consisting of aliphatic amidase, beta-ureidopropionase, carbamylase, nitrilase, and so on. The amount of R-amidase in the supernatant of the sonicated cell-free extract of an Escherichia coli transformant overexpressing the ramA gene was about 30 000 times higher than that of Pseudomonas sp. MCI3434. The intact cells of the E. coli transformant could be used for the R-stereoselective hydrolysis of racemic piperazine-2-tert-butylcarboxamide. The recombinant enzyme was purified to electrophoretic homogeneity from cell-free extract of the E. coli transformant overexpressing the ramA gene. On gel-filtration chromatography, the enzyme appeared to be a monomer. It had maximal activity at 45 degrees C and pH 8.0, and was completely inactivated in the presence of p-chloromercuribenzoate, N-ethylmaleimide, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, or Pb2+. RamA had hydrolyzing activity toward the carboxamide compounds, in which amino or imino group is connected to beta- or gamma-carbon, such as beta-alaninamide, (R)-piperazine-2-carboxamide (R)-piperidine-3-carboxamide, D-glutaminamide and (R)-piperazine-2-tert-butylcarboxamide. The enzyme, however, did not act on the other amide substrates for the aliphatic amidase despite its sequence similarity to RamA.  相似文献   

2.
The 3D structure of the amidase from Rhodococcus erythropolis (EC 3.5.1.4) built by homology-based modeling is presented. Propionamide and acetamide are docked to the amidase. The reaction models were used to characterize the explicit enzymatic reaction. The calculated free energy barrier at B3LYP/6-31G* level of Model A (Ser194 + propionamide) is 19.72 kcal mol−1 in gas (6.47 kcal mol−1 in solution), and of Model B (Ser194 + Gly193 + propionamide) is 18.71 kcal mol−1 in gas (4.57 kcal mol−1 in solution). The docking results reveal that propionamide binds more strongly than acetamide due to the ethyl moiety of propionamide, which makes the carboxyl oxygen center of the substrate slightly more negative, making formation of the positively charged tetrahedral intermediate slightly easier. The quantum mechanics results demonstrate that Ser194 is essential for the acyl-intermediate, and Gly193 plays a secondary role in stabilizing acyl-intermediate formation as the NH groups of Ser194 and Gly193 form hydrogen bonds with the carbonyl oxygen of propionamide. The new structural and mechanistic insights gained from this computational study should be useful in elucidating the detailed structures and mechanisms of amidase and other homologous members of the amidase signature family.  相似文献   

3.
A new aliphatic amidase gene (ami), having a less than 77% level of similarity with the nearest homologs, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transporter genes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic amide) and does not use 4′-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6–7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.  相似文献   

4.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, alpha-chlorophenylacetamide, and alpha-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

5.
An enantioselective amidase from Rhodococcus erythropolis MP50 was purified to homogeneity. The enzyme has a molecular weight of about 480,000 and is composed of identical subunits with molecular weights of about 61,000. The NH2-terminal amino acid sequence was significantly different from previously published sequences of bacterial amidases. The purified amidase hydrolyzed a wide range of aliphatic and aromatic amides, The highest enzyme activities were found with amides carrying hydrophobic residues, such as pentyl or naphthoyl. The purified enzyme converted racemic 2-phenylpropionamide, naproxen amide [2-(6-methoxy-2-naphthyl) propionamide], and ketoprofen amide [2-(3'-benzoylphenyl)propionamide] to the corresponding S-acids with an enantiomeric excess of >99% and an almost 50% conversion of the racemic amides. The enzyme also hydrolyzed different alpha-amino amides but without significant enantioselectivity.  相似文献   

6.
Amidase was a crucial enzyme responsible for the conversion of acrylamide to acrylic acid in Rhodococcus erythropolis. Its coding gene ami was amplified by PCR using the genomic DNA of R. erythropolis as template. Subsequently, it was ligated to expression plasmids and transformed in Escherichia coli and Bacillus subtilis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that both recombinant E. coli BL21 (DE3) and B. subtilis generated amidase of 56 kDa. The expression mass and enzyme activity suggested that B. subtilis was more suitable as a host when ami gene was under the control of a powerful promoter. To further study the expression effect of different promoters in B. subtilis, five distinct promoters (sacB, amyE, p43, degQ, aprE) and their native signal peptide genes were employed to separately construct five different vectors harboring ami gene. Of the five novel vectors, the amyE promoter along with its native signal peptide gene was most effective. The maximum specific activity of amidase at pH 7.0 and 37 °C was about 8.7 U/mg and the conversion efficiency could approximately reach 90% within 6 h. This result indicated the expression difference of distinct promoters, which provided the basis for the forthcoming research.  相似文献   

7.
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

8.
Summary A Rhodococcus erythropolis strain was isolated from soil on the basis of its ability to use acetaminophen as the sole source of both carbon and energy for growth. When grown in a complex medium containing an anilide inducer compound, the bacterium exhibited aryl acylamidase (EC 3.5.1.13) activity. This activity was not subject to carbon or nitrogen repression by the growth medium constituents as the enzyme was present throughout the exponential growth phase. The anilide was converted to the corresponding aniline, which was not further degraded. The enzyme was partially purified by a variety of methods including a batch ion exchange procedure, column ion exchange chromatography and hydrophobic interaction chromatography. The enzyme had a maximum activity at around pH 8.0 and had a Km for acetaminophen of 0.11 mM. Electrochemical assays of aryl acylamidase activity are described. The enzyme is suitable for use as a reagent in the clinical diagnostic measurement of acetaminophen. Offprint requests to: P. A. Vaughan  相似文献   

9.
The biochemical characterization of the muconate and the chloromuconate cycloisomerases of the chlorophenol-utilizing Rhodococcus erythropolis strain 1CP previously indicated that efficient chloromuconate conversion among the gram-positive bacteria might have evolved independently of that among gram-negative bacteria. Based on sequences of the N terminus and of tryptic peptides of the muconate cycloisomerase, a fragment of the corresponding gene has now been amplified and used as a probe for the cloning of catechol catabolic genes from R. erythropolis. The clone thus obtained expressed catechol 1,2-dioxygenase, muconate cycloisomerase, and muconolactone isomerase activities. Sequencing of the insert on the recombinant plasmid pRER1 revealed that the genes are transcribed in the order catA catB catC. Open reading frames downstream of catC may have a function in carbohydrate metabolism. The predicted protein sequence of the catechol 1,2-dioxygenase was identical to the one from Arthrobacter sp. strain mA3 in 59% of the positions. The chlorocatechol 1,2-dioxygenases and the chloromuconate cycloisomerases of gram-negative bacteria appear to be more closely related to the catechol 1,2-dioxygenases and muconate cycloisomerases of the gram-positive strains than to the corresponding enzymes of gram-negative bacteria.  相似文献   

10.
11.
Jin LQ  Li YF  Liu ZQ  Zheng YG  Shen YC 《New biotechnology》2011,28(6):610-615
2-Chloronicotinic acid is receiving much attention for its effective applications as a key precursor in the synthesis of pesticides and medicines. In this study, a strain ZJB-09149 converting 2-chloro-3-cyanopyridine to 2-chloronicotinic acid was newly isolated and identified as Rhodococcus erythropolis, based on its physiological and biological tests, and 16S rDNA sequence analysis. In addition, the effects of inducer, carbon source and nitrogen source were examined. Maximum activity was achieved when the above parameters were set as 8 g/l ?-caprolactam, 7 g/l yeast extract and 5 g/l maltose. Moreover, the biotransformation pathway of 2-chloro-3-cyanopyridine to 2-chloronicotinic acid in strain ZJB-09149 was investigated as well. This study revealed that the nitrile hydratase (NHase) and amidase expressed in R. erythropolis ZJB-09149 are responsible for the conversion of 2-chloro-3-cyanopyridine. This is the first time to report on the biotransformation preparation of 2-chloronicotinic acid.  相似文献   

12.
Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.  相似文献   

13.
Summary The resolution of racemic ketoprofen amide by whole cells of Rhodococcus erythropolis MP 50 and Rhodococcus sp. C3II was studied. With both strains racemic ketoprofen amide was converted to S-ketoprofen with an enantiomeric excess > 97 % at a conversion rate up to 40 % of the theoretical value. The specific activity of strain MP 50 for ketoprofen amide was about 0.12 mol min–1 and mg of dry weight and the substrate was converted for several hours at a constant rate.  相似文献   

14.
To develop a transposable element-based system for mutagenesis in Rhodococcus, we used the sacB gene from Bacillus subtilis to isolate a novel transposable element, IS1676, from R. erythropolis SQ1. This 1693 bp insertion sequence is bounded by imperfect (10 out of 13 bp) inverted repeats and it creates 4 bp direct repeats upon insertion. Comparison of multiple insertion sites reveals a preference for the sequence 5′-(C/T)TA(A/G)-3′ in the target site. IS1676 contains a single, large (1446 bp) open reading frame with coding potential for a protein of 482 amino acids. IS1676 may be similar to an ancestral transposable element that gave rise to repetitive sequences identified in clinical isolates of Mycobacteriumkansasii. Derivatives of IS1676 should be useful for analysis of Rhodococcus strains, for which few other genetic tools are currently available. Received: 1 April 1999 / Received revision: 6 July 1999 / Accepted: 1 August 1999  相似文献   

15.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

16.
A constitutively expressed aliphatic amidase from a Rhodococcus sp. catalyzing acrylamide deamination was purified to electrophoretic homogeneity. The molecular weight of the native enzyme was estimated to be 360,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation yielded a homogeneous protein band having an apparent molecular weight of about 44,500. The amidase had pH and temperature optima of 8.5 and 40 degrees C, respectively, and its isoelectric point was pH 4.0. The amidase had apparent K(m) values of 1.2, 2.6, 3.0, 2.7, and 5.0 mM for acrylamide, acetamide, butyramide, propionamide, and isobutyramide, respectively. Inductively coupled plasma-atomic emission spectometry analysis indicated that the enzyme contains 8 mol of iron per mol of the native enzyme. No labile sulfide was detected. The amidase activity was enhanced by, but not dependent on Fe(2+), Ba(2+), and Cr(2+). However, the enzyme activity was partially inhibited by Mg(2+) and totally inhibited in the presence of Ni(2+), Hg(2+), Cu(2+), Co(2+), specific iron chelators, and thiol blocking reagents. The NH2-terminal sequence of the first 18 amino acids displayed 88% homology to the aliphatic amidase of Brevibacterium sp. strain R312.  相似文献   

17.
The ability of propane-assimilating microorganisms of the genus Rhodococcus to utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus erythropolis 3/89 was shown to be the an inducible enzyme catalyzing epoxidation and hydroxylation of organic compounds. The optimum conditions for epoxidation of gaseous and liquid alkenes and hydroxylation of aromatic carbohydrates were found.  相似文献   

18.
The ability of propane-assimilating microorganisms of the genus Rhodococcusto utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus erythropolis3/89 was shown to be an inducible enzyme catalyzing epoxidation and hydroxylation of organic compounds. The optimum conditions for the epoxidation of gaseous and liquid alkenes and the hydroxylation of aromatic carbohydrates were found.  相似文献   

19.
Three types of monohydroxybenzoate oxygenase, salicylate 5-oxygenase (SAL5O) forming gentisate from salicylate, m-hydroxybenzoate 6-oxygenase (MHB6O) forming gentisate from m-hydroxybenzoate, and p-hydroxybenzoate 3-oxygenase (PHB3O) forming protocatechuate from p-hydroxybenzoate, were purified from a cell-free extract of Rhodococcus erythropolis S-1, a Gram-positive bacterium. Each purified enzyme was homogenous on native PAGE. Each enzyme was a tetramer having identical subunits, a flavoporotein containing FAD, and a NADH-dependent monooxygenase. The three enzymes were much alike in general enzymatic properties, but very different in substrate specificity.  相似文献   

20.
Biodesulfurization (BDS) of dibenzothiophene (DBT) was carried out by Rhodococcus erythropolis IGST8 decorated with magnetic Fe3O4 nanoparticles, synthesized in‐house by a chemical method, with an average size of 45–50 nm, in order to facilitate the post‐reaction separation of the bacteria from the reaction mixture. Scanning electron microscopy (SEM) showed that the magnetic nanoparticles substantially coated the surfaces of the bacteria. It was found that the decorated cells had a 56% higher DBT desulfurization activity in basic salt medium (BSM) compared to the nondecorated cells. We propose that this is due to permeabilization of the bacterial membrane, facilitating the entry and exit of reactant and product, respectively. Model experiments with black lipid membranes (BLM) demonstrated that the nanoparticles indeed enhance membrane permeability. Biotechnol. Bioeng. 2009;102: 1505–1512. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号