首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of high concentrations of L-ascorbic acid on the growth of some human and animal transformed and non-transformed cell lines has been investigated. Directly implemented into culture of transformed cell lines it decreased [3H]thymidine, [3H]uridine and [3H]leucine incorporation into cells. Vitamin C inhibited DNA synthesis by transformed cells 3-4 times more efficiently than by normal cells. 2. In vivo treatment of athymic nude mice bearing human mammary carcinoma with 500 mg/kg L-ascorbic acid for the first 15 days markedly inhibited the growth of tumor cells. 3. As determined by alkaline elution, both DNA strand breaks and DNA cross links were observed in mammary carcinoma cells treated with vitamin C. DNA-DNA and DNA-protein cross links in cells treated with L-ascorbic acid were revealed by the proteinase K assay. Removal of vitamin C caused an immediate onset of spontaneous repair of single or double stranded DNA breaks. If, however, vitamin was reintroduced into cell culture, this spontaneous repair was reversed. 4. Our results indicate an antimetabolic activity of L-ascorbic acid in human and animal transformed cells, probably due to lethal damages in DNA.  相似文献   

2.
The kinetics of electron transfer from L-ascorbic acid [H2A] to oxidants, dichlorotetraaquoruthenium(III) [RuCl2(H2O)4]+, iminodiacetatoruthenium(III) [Ru(III)IMDA]+ and ethylenediaminetetraacetatoruthenate(III) [Ru(III)EDTA] exhibit a first order dependence both on L-ascorbic acid and oxidants and inverse first order dependence on hydrogen ion concentration. Kinetic, spectroscopic and thermodynamic parameters are reported for the formation of intermediate Ru(III) (1:1) and Ru(III)chelateascorbate (1:1:1) complexes during the oxidation of L-ascorbic acid. The results are interpreted in terms of a mechanism involving a rate-determining inner sphere one electron transfer from L-ascorbic acid to the oxidants used in the present investigation, followed by a subsequent and kinetically rapid transfer of the second electron of ascorbic acid to another molecule of the oxidant. A detailed discussion of the kinetic data, temperature and ionic strength dependence of the oxidation reactions is presented.  相似文献   

3.
Glycerol-3-phosphate dehydrogenase from pig brain mitochondria was stimulated 2.2-fold by the addition of 50 microm l-ascorbic acid. Enzyme activity, dependent upon the presence of l-ascorbic acid, was inhibited by lauryl gallate, propyl gallate, protocatechuic acid ethyl ester, and salicylhydroxamic acid. Homogeneous pig brain mitochondrial glycerol-3-phosphate dehydrogenase was activated by either 150 microm L-ascorbic acid (56%) or 300 microm iron (Fe(2+) or Fe(3+) (62%)) and 2.6-fold by the addition of both L-ascorbic acid and iron. The addition of L-ascorbic acid and iron resulted in a significant increase of k(cat) from 21.1 to 64.1 s(-1), without significantly increasing the K(m) of L-glycerol-3-phosphate (10.0-14.5 mm). The activation of pure glycerol-3-phosphate dehydrogenase by either L-ascorbic acid or iron or its combination could be totally inhibited by 200 microm propyl gallate. The metabolism of [5-(3)H]glucose and the glucose-stimulated insulin secretion from rat insulinoma cells, INS-1, were effectively inhibited by 500 microm or 1 mm propyl gallate and to a lesser extent by 5 mm aminooxyacetate, a potent malate-aspartate shuttle inhibitor. The combined data support the conclusion that l-ascorbic acid is a physiological activator of mitochondrial glycerol-3-phosphate dehydrogenase, that the enzyme is potently inhibited by agents that specifically inhibit certain classes of di-iron metalloenzymes, and that the enzyme is chiefly responsible for the proximal signal events in INS-1 cell glucose-stimulated insulin release.  相似文献   

4.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.  相似文献   

5.
To obtain an insight into fluorophores formed in proteins during lipid peroxidation, a lysine residue analogue (N(alpha)-hippuryllysine) was exposed to autoxidation of linoleic acid catalyzed by iron(III)-EDTA and L-ascorbic acid. The reaction predominantly produced two fluorescent products, N,N'-bis[5-(N-benzoylglycylamino)-5-carboxypentyl]-2-hydroxy-2-pentyl-3-imino-l,2-dihydropyrrole (II) and N,N'-bis[5-(N-benzoylglycylamino)-5-carboxypentyl]-2-hydroxy-2-(7-carboxyheptyl)-3-imino-1,2-dihydropyrolle (I).  相似文献   

6.
5-Keto-D-[1-14C]gluconic acid, the most effective precursorof L(+)tartaric acid among all labeled compounds which haveever been tested in grapes, was found to be a good precursorof L(+)tartaric acid in a species of Pelargonium. The synthesisof labeled L(+)tartaric acid from D-[1-14C]glucose in Pelargoniumwas remarkably depressed when a 0.5% solution of D-gluconateor 5-keto-D-gluconate was administered continuously to leavestogether with D-[1-14C]glucose. Our results provide strong evidence that D-[1-14C]glucose ismetabolized in Pelargonium to give labeled L(+)tartaric acidvia (probably D-gluconic acid and) 5-keto-D-gluconic acid withoutpassing through L-ascorbic acid. Labeled L-idonic acid was found in young leaves of Pelargoniumwhich had been labeled with L-[U-14C]ascorbic acid. The synthesisof the labeled L-idonic acid increased when a 0.1% solutionof L-threonate was administered continuously to leaves togetherwith L-[U-14C]ascorbic acid. Specifically labeled compounds, recognized as the members ofthe synthetic pathway for L(+)tartaric acid from L-ascorbicacid via L-idonic acid in grapes, were administered to youngleaves of Pelargonium. Each compound (2-keto-L-[U-14C]idonicacid, L-[U-14C]idonic acid, 5-keto-D-[1-14C]gluconic acid and5-keto-D-[6-14C]gluconic acid) was partly metabolized, as ingrapes. The metabolic pathway starting from L-ascorbic acidto L(+)tartaric acid via L-idonic acid, however, did not actuallycontribute to the synthesis of L(+)tartaric acid in Pelargoniumprobably because the activity of each metabolic step was muchlower than that observed in grapes. (Received May 28, 1984; Accepted July 30, 1984)  相似文献   

7.
Axenic Pistia stratiotes L. plants were pulse-chase labeled with [14C]oxalic acid, L[1-14C]ascorbic acid, L-6-14C]ascorbic acid, D-[1-14C]erythorbic acid, L-[1-14C]galactose, or [1-14C]glycolate. Specific radioactivities of L-ascorbic acid (AsA), free oxalic acid (OxA) and calcium oxalate (CaOx) in labeled plants were compared. Samples of leaf tissue were fixed for microautoradiography and examined by confocal microscopy. Results demonstrate a biosynthetic role for AsA as precursor of OxA and its crystalline deposition product, CaOx, in idioblast cells of P. stratiotes and support the recent discovery of Wheeler, Jones and Smirnoff (Wheeler, G.L., Jones M.A., & Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365-369) that L-galactose is a key intermediate in the conversion of D-glucose to AsA in plants. D-[1-14C]erythorbic acid (a diastereomeric analog of AsA) is utilized also by P. stratiotes as a precursor of OxA and its calcium salt deposition product in idioblasts. Labeled OxA is rapidly incorporated into CaOx in idioblasts, but microautoradiography shows there is also significant incorporation of carbon from OxA into other components of growing cells, contrary to the dogma that OxA is a relatively stable end product of metabolism. Glycolate is a poor substrate for synthesis of OxA and CaOx formation, further establishing AsA as th immediate precursor in the synthesis of OxA used for calcium precipitation in crystal idioblasts.  相似文献   

8.
Saccharomyces cerevisiae cells incubated with D-glucose (D-Glc), D-galactose or D-mannose (D-Man) synthesised D-erythroascorbic acid (D-EAA) but not L-ascorbic acid (L-AA). Accumulation of D-EAA was observed in cells incubated with D-arabinose (D-Ara) whilst accumulation of L-AA occurred in cells incubated with L-galactose (L-Gal), L-galactono-1,4-lactone and L-gulono-1,4-lactone. When S. cerevisiae cells were incubated with D-[U-(14)C]Glc, D-[U-(14)C]Man or L-[1-(14)C]Gal, incorporation of radioactivity into L-AA was observed only with L-[1-(14)C]Gal. Pre-incubation of yeast cells with D-Ara substantially reduced the incorporation of L-[1-(14)C]Gal into L-AA. Our results indicate that, under appropriate conditions, yeast cells can synthesise L-AA via the pathway naturally used for D-EAA biosynthesis.  相似文献   

9.
Reaction of the oxidation product of L-ascorbic acid, dehydro-L-ascorbic acid, with o-phenylenediamine, followed by 2,4,6-trichlorophenylhydrazine (3) afforded 3-[1-(2,4,6-trichlorophenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one (4), whose structure was deduced from studying its periodate oxidation, which gave the glyoxal derivative 3-[1-(2,4,6-trichlorophenylhydrazono)glyoxal-1-yl]quinoxalin-2(1H)one (5) that upon reduction afforded 3-[1-(2,4,6-trichlorophenylhydrazono)-2-hydroxyethy-1-yl]quinoxalin-2(1H)one (6). The reaction of 5 with 3 afforded the bishydrazone 3-[1,2-bis(2,4,6-trichlorophenylhydrazono)glyoxal-1-yl]quinoxalin-2(1H)one. The reaction of 5 with acetic anhydride in pyridine afforded the 2,3-dihydrofuro[2,3-b]quinoxaline derivative 2-acetoxy-3-[2-acetyl-2-(2,4,6-trichlorophenyl)hydrazono)]-2,3-dihydrofuro[2,3-b]quinoxaline. Acetylation of 4 with acetic anhydride in pyridine afforded the acyclic diacetate intermediate 3-[3,4-di-O-acetyl-2-deoxy-1-(2,4,6-trichlorophenylhydra-zono)but-2-en-1-yl]quinoxalin-2(1H)one (12), which was also obtained from the reaction of 4 with boiling acetic anhydride. Compound 12 rearranged under the reaction conditions to give the pyrazole derivatives 3-[5-(ace-toxymethyl)-1-(2,4,6-trichlorophenyl)pyrazol-3-yl]quinoxalin-2(1H)one (14) and 2-acetoxy-3-[5-(acetoxymethyl)-1-(2,4,6-trichlorophenyl)pyrazol-3-yl)]quinoxaline (15), as well as the 2,3-dihydrofuro[2,3-b]quinoxaline derivative 2-(2-acetoxyethen-2-yl)-3-[2-(2,4,6-trichlorophenyl)hydrazono]-2,3-dihydrofuro[2,3-b]quinoxaline. Acetylation of 3-[5-(hydroxymethyl)-l-(2,4,6-trichlorophenyl)pyrazol-3-yl]quinoxalin-2(1H)one (16) with acetic anhydride in pyridine or 12 with boiling acetic anhydride afforded 15 and 16, respectively. Treatment of 4 with diluted sodium hydroxide afforded the pyrazolo[2,3-b]quinoxaline (flavazole) derivative 1-(2,4,6-trichlorophenyl)-3-(L-threo-glycerol-1-yl)pyrazolo[2,3-b]quinoxaline whose acetylation afforded the acetyl derivative 3-(2,3,4-tri-O-acetyl-L-threo-glycerol-1-yl)-1-(2,4,6-trichlorophenyl)pyrazolo[2,3-b]quinoxaline. The assigned structures were based on spectral analysis. The activity of compound 4 against hepatitis B virus has been studied.  相似文献   

10.
Ascorbic acid inhibition of Campylobacter jejuni growth.   总被引:2,自引:0,他引:2       下载免费PDF全文
The inhibitory effect of ascorbic acid on Campylobacter jejuni is described. In vitro growth of clinical strains, as measured spectrophotometrically, was inhibited by 0.5 mg of freshly prepared L-ascorbic acid per ml. Alkaline-treated or aged L-ascorbic acid increased inhibition, as did copper; however, L-cysteine, L-cystine, and glutathione prevented inhibition. Biochemical analysis of the medium and cultures indicated that one or more of the oxidation products of L-ascorbic acid, e.g., L-dehydroascorbic acid or L-diketogulonic acid, were more effective inhibitors than was reduced L-ascorbic acid.  相似文献   

11.
The metabolism of [14C]eicosa-11,14-dienoic acid was investigated in rat testes in vivo and in vitro. Intratesticular injection of [1-14C]eicosa-11,14-dienoic acid resulted in the appearance of radioactivity (4-30% of 14C in total fatty acids) in 20-carbon trienoic fatty acids and a small amount (2-3.5%) in arachidonic acid. Analysis of the 20-carbon trienoic acid fraction by ozonolysis indicated that 15 to 34% of the 14C in this fraction was in an 8-carbon fragment originating from eicosa-8,11,14-trienoic acid. The rest (66 to 84%) was in a 5-carbon fragment, presumably originating from eicosa-5,11,14-trienoic acid. Incubation of testicular tissue minces or microsomes with [1-14C]eicosa-11,14-dienoic acid yielded labeled eicosa-8,11,14- and eicosa-5,11,14-trienoic acids in proportions similar to those obtained in vivo. Added unlabeled acetate had no effect on the formation of [14C]eicose-8,11,14-trienoic acid in vitro. Therefore, it is unlikely that the labeled eicosa-8,11,14-trienoic acid arose from elongation of octadeca-6,9,12-trienoic acid with labeled acetate derived from bio-oxidation of the labeled substrate. These results are compatible with a limited desaturation of eicosa-11,14-dienoic acid to eicosa-8,11,14-trienoic acid and provide evidence for delta8 desaturate activity in rat testis.  相似文献   

12.
We have previously found that some mammalian tissue homogenates can catalyze a unique transglucosylation from maltose to L-ascorbic acid (AA), resulting in a chemically stable AA derivative, L-ascorbic acid alpha-glucoside (AAG). In the present study, the enzyme responsible for this transglucosylation was isolated from rat intestinal membrane. The formation of AAG was determined by HPLC with an ODS column. The specific activity of AAG-forming enzyme was increased in parallel with that of alpha-glucosidase (maltose hydrolase) during the purification, and two neutral alpha-glucosidases, termed alpha-glucosidases I and II, were purified to apparent homogeneity. Their enzymological properties showed that they corresponded to maltase [EC 3.2.1.20] and sucrase-isomaltase complex [EC 3.2.1.48/10], respectively. Both enzymes could form AAG by splitting only maltose among the disaccharides examined, although alpha-glucosidase I possessed a considerably higher activity than the other enzyme. Both AAG formation and maltose hydrolysis were dependent on incubation temperature with the maximal activity at 60 degrees C, but there was an apparent difference between their pH optima. AAG thus formed could also be hydrolyzed by the purified enzymes. From these results, it is concluded that membrane-bound neutral alpha-glucosidases from rat intestine have site-specific transglucosylase activity to form nonreducing AAG which is distinct from L-ascorbic acid-6-O-alpha-D-glucoside.  相似文献   

13.
The objective of this study was to develop an acylation agent for the radioiodination of monoclonal antibodies that would maximize retention of the label in tumor cells following receptor- or antigen-mediated internalization. The strategy taken was to add a polar substituent to the labeled aromatic ring to impede transport of labeled catabolites across lysosomal and cell membranes after antibody degradation. Preparation of unlabeled N-succinimidyl 4-guanidinomethyl-3-iodobenzoate (SGMIB) was achieved in six steps from 3-iodo-4-methylbenzoic acid. Preparation of 4-guanidinomethyl-3-[131I]iodobenzoic acid from the silicon precursor, 4-(N1,N2-bis-tert-butyloxycarbonyl)guanidinomethyl-3-trimethylsilylbenzoic acid proceeded in less than 5% radiochemical yield. A more successful approach was to prepare [131I]SGMIB directly from the tin precursor, N-succinimidyl 4-(N1,N2-bis-tert-butyloxycarbonyl)guanidinomethyl-3-trimethylstannylbenzoate, which was achieved in 60-65% radiochemical yield. A rapidly internalizing anti-epidermal growth factor receptor variant III antibody L8A4 was labeled using [131I]SGMIB in 65% conjugation efficiency and with preservation of immunoreactivity. Paired-label in vitro internalization assays demonstrated that the amount of radioactivity retained in cells after internalization for L8A4 labeled with [131I]SGMIB was 3-4-fold higher than that for L8A4 labeled with 125I using either Iodogen or [125I]SIPC. Catabolite assays documented that the increased retention of radioiodine in tumor cells for antibody labeled using [131I]SGMIB was due to positively charged, low molecular weight species. These results suggest that [131I]SGMIB warrants further evaluation as a reagent for labeling internalizing antibodies.  相似文献   

14.
Interaction between [Co(NH3)5Cl]Cl2, [Co(NH3)4Cl2]Cl and L-ascorbic acid has been investigated in aqueous solution and solid complexes of the type [Co(NH3)5 ascorbate]Cl2 X H2O and [Co(NH3)4 ascorbate]Cl2 X H2O have been isolated and characterized by 13C-NMR, FT-IR and electron absorption spectroscopy. Spectroscopic and other evidence suggested that the sugar anion binds monodentately in the [Co(NH3)5 ascorbate]2+ cation via the ionized O3 oxygen atom and bidentately in [Co(NH3)4 ascorbate]2+ through the O1 and O4 oxygen atoms, resulting in a six-coordinate geometry around the Co(III) ion. The intermolecular sugar hydrogen-bonding network is perturbed upon sugar metalation and the sugar moiety shows a similar conformation to that of the sodium ascorbate compound in these series of cobalt-ammine complexes.  相似文献   

15.
The production of a highly branched beta-1,3-glucan by Aureobasidium pullulans K-1 in Czapek's medium has been found to be stimulated by ascorbic acid. When the culture supernatant, after removal of polysaccharide from the culture filtrate by ethanol precipitation, was concentrated, then added to a new medium and this strain was cultured in the medium, the polysaccharide production was stimulated the same as when L-ascorbic acid was added to the medium. The stimulating substance was partially purified from the supernatant, and was found to be oxalic acid; 0.03% oxalic acid was the most effective concentration for the stimulation of polysaccharide production. The stimulating substance, oxalic acid, was proved to be derived from ascorbic acid added to a medium in an experiment using L-[1-14C]ascorbic acid. We suggest that oxalic acid generated from the metabolism of ascorbic acid in cells of Aureobasidium pullulans K-1 participated in the stimulation of the polysaccharide production by ascorbic acid.  相似文献   

16.
Thirty novel 9-fluoro-2,3-dihydro-8,10-(mono/di-sub)-3-methyl-8-nitro-7-oxo-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acids were synthesized from 2,3,4,5-tetrafluoro benzoic acid and evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB), and Mycobacterium smegmatis (MC(2)) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from mycobacteria. Among the synthesized compounds, 10-[2-carboxy-5,6-dihydroimidazo[1,2-a]pyrazin-7(8H)-yl]-9-fluoro-2,3-dihydro-3-methyl-8-nitro-7-oxo-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid was found to be the most active compound in vitro with MIC99 of 0.19 microM and 0.09 microM against MTB and MTR-TB, respectively. In the in vivo animal model also the same compound decreased the bacterial load in lung and spleen tissues with 1.91 and 2.91--log10 protections, respectively, at the dose of 50mg/kg body weight. Compound 10-[(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)]-9-fluoro-2,3-dihydro-3-methyl-8-nitro-7-oxo-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid was found to be the most active in the inhibition of the supercoiling activity of DNA gyrase with an IC(50) of 10.0 microg/mL. The results demonstrate the potential and importance of developing new oxazino quinolone derivatives against mycobacterial infections.  相似文献   

17.
Enantiomers of 5,11-dihydro-11-[2-[2-[(N,N-dipropylaminomethyl)piperidin-1- yl]ethylamino]-carbonyl]-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one (AF-DX 384) 1, have been synthesized from (S)-(+) and (R)-(-)-2-[N,N-dipropylaminomethyl]piperidine 4. The enantiomeric excess of 1 has been determined by capillary electrophoresis by using the alpha-highly sulphated cyclodextrin (alpha-HSCD) as chiral selector within the running electrolyte. (S)-(+)-(4) was prepared from (S)-(-)-pipecolic acid in a 4-step procedure (overall yield: 30%, ee: 99%) and (R)-(-)-AF-DX 384 from (R)-(+)-pipecolic acid. The (R)-(-) isomer exhibited in vitro a 23-fold higher affinity than its enantiomer (S)-(+) towards muscarinic receptors of subtype 2.  相似文献   

18.
1. The in vitro basal lipid metabolism of rat pancreatic fragments was compared with that in adipose tissue fragments and liver slices. 2. [1-14C]Acetate added to the media was mostly incorporated into palmitic acid and to a lesser extent into oleic acid. In addition, pancreatic tissue exhibited a marked capacity for elongation of polyunsaturated fatty acids by [1-14C]acetate and resulting desaturation when compared to adipose tissue and liver. 3. Data obtained in the presence of [U-14C]glucose, [1-14C]palmitate and 3H20 indicate that acetyl-CoA derived from glucose and from beta-oxidation of fatty acids contributed to de novo lipogenesis. 4. Oxidation of [1-14C]palmitic acid was 9-13 times higher in the pancreas than in adipose tissue or liver when expressed on a wet weight basis. 5. The fatty acid moiety of pancreatic glycerolipids could be derived from de novo synthesis, fatty acids added to the medium, or from fatty acids formed from the hydrolysis of endogenous lipids. The glycerol moiety could be derived either from glucose, or directly from glycerol through participation of glycerol kinase.  相似文献   

19.
Okuda K  Li L  Kudlicka K  Kuga S  Brown RM 《Plant physiology》1993,101(4):1131-1142
In vitro [beta]-glucan products were synthesized by digitonin-solubilized enzyme preparations from plasma membrane-enriched fractions of cotton (Gossypium hirsutum) fiber cells. The reaction mixture favoring [beta]-1,4-glucan synthesis included the following effectors: Mg2+, Ca2+, cellobiose, cyclic-3[prime]:5[prime]-GMP, and digitonin. The ethanol insoluble fraction from this reaction contained [beta]-1,4-glucan and [beta]-1,3-glucan in an approximate ratio of 25:69. Approximately 16% of the [beta]-1,4-glucan was resistant to the acetic/nitric acid reagent. The x-ray diffraction pattern of the treated product favoring [beta]-1,4-glucan synthesis strongly resembled that of cellulose II. On the basis of methylation analysis, the acetic/nitric acid reagent-insoluble glucan product was found to be exclusively [beta]-1,4-linked. Enzymic hydrolysis confirmed that the product was hydrolyzed only by cellobiohydrolase I. Autoradiography proved that the product was synthesized in vitro. The degree of polymerization (DP) of the in vitro product was estimated by nitration and size exclusion chromatography; there were two average DPs of 59 (70%) and 396 (30%) for the [beta]-1,3-glucanase-treated sample, and an average DP of 141 for the acetic/nitric acid reagent-insoluble product. On the basis of product analysis, the positive identification of in vitro-synthesized cellulose was established.  相似文献   

20.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号