首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
核衣壳(nucleocapsid,N)蛋白有稳定病毒基因组、调控病毒复制及细胞状态的特殊作用。鼠肝炎病毒(murine hepatitis virus,MHV)为乙型冠状病毒属的原型病毒,是研究冠状病毒N蛋白功能的经典模型。本研究用去污剂处理鼠冠状病毒粒子暴露N蛋白,另用原核表达纯化的重组N蛋白分别免疫小鼠,制备多克隆及单克隆抗体。酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)和蛋白免疫印迹分析结果显示两类抗体均具有高灵敏度和特异度,与甲型冠状病毒猪传染性胃肠炎病毒(porcine transmissible gastroenteritis virus,TGEV)的N蛋白无交叉反应。原核表达缺失突变的N蛋白分析结果显示,多克隆抗体与单克隆抗体2E6识别的鼠冠状病毒N蛋白抗原决定簇完全一致,位于N端结构域(N-terminal domain,NTD)C端与SR之间的58个氨基酸残基内。此外,基于单克隆抗体2E6的ELISA及免疫荧光法能检测到感染细胞中和培养上清液中的N蛋白组分,且其含量与病毒复制的滴度一致。这些结果表明,鼠冠状病毒复制过程中粒子与细胞中的N蛋白可能维持相似的结构,使NTD与SR之间的部分氨基酸残基一直暴露在表面,从而形成了优势抗原决定簇。  相似文献   

6.
7.
We studied the temporal succession of vertical profiles of Emiliania huxleyi and their specific viruses (EhVs) during the progression of a natural phytoplankton bloom in the North Sea in June 1999. Genotypic richness was assessed by exploiting the variations in a gene encoding a protein with calcium-binding motifs (GPA) for E.?huxleyi and in the viral major capsid protein gene for EhVs. Using denaturing gradient gel electrophoresis and sequencing analysis, we showed at least three different E.?huxleyi and EhV genotypic profiles during the period of study, revealing a complex, and changing assemblage at the molecular level. Our results also indicate that the dynamics of EhV genotypes reflect fluctuations in abundance of potential E.?huxleyi host cells. The presence and concentration of specific EhVs in the area prior to the bloom, or EhVs transported into the area by different water masses, are significant factors affecting the structure and intraspecific succession of E.?huxleyi during the phytoplankton bloom.  相似文献   

8.
9.
10.
Nervous necrosis virus (NNV) belongs to the betanodavirus of the Nodaviridae family. It is the causative agent of viral nervous necrosis (VNN) disease, and has inflicted devastating damage on the world-wide aquaculture industry. The fish that survived after the outbreak of VNN become persistently NNV-infected carriers. NNV-persistent infection has been demonstrated in a barramundi brain (BB) cell line, and it involves the type I interferon (IFN) response with the expression of Mx gene. However, little of the defense mechanism in fish cells against NNV infection is understood. In this study, the anti-NNV mechanism of barramundi Mx protein (BMx) was elucidated in cBB cells which were derived from BB cell line after serial treatments by NNV-specific antiserum and then became an NNV-free cell line. After NNV infection of cBB cells, the level of viral RNA-dependent RNA polymerase (RdRp) increased with time over a period of 24 h post-infection (hpi), but decreased when the BMx expression increased 48 and 72 hpi. When the expression of BMx was down-regulated by BMx-specific siRNA, the expression levels of viral RNA, proteins and progeny viral titers were restored. The BMx was found to colocalize with viral RdRp at the perinuclear area 24 hpi and coprecipitate with viral RdRp, indicating that they could bind with each other. Viral RdRp was also revealed to colocalize with lysosomes 48 hpi as the NNV RdRp level started to decline. Therefore, it is suggested that BMx inhibited the viral RNA synthesis by interaction with viral RdRp, and redistributed RdRp to perinuclear area for degradation.  相似文献   

11.
Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.  相似文献   

12.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.  相似文献   

13.
14.
15.
In this study, cottontail rabbit papillomavirus infection of domestic rabbits was used as an animal model to develop papillomavirus early gene-based vaccines. Groups of rabbits were intracutaneously vaccinated with single papillomavirus early genes E1, E2, E6, and E7 or with a combination of these four genes. Only a fraction of rabbits were protected from subsequent viral challenge when vaccinated with the E1 or E6 gene. Viral tumor growth in those rabbits vaccinated with the E1 or E2 gene was suppressed compared to that in controls. In contrast, seven of nine rabbits vaccinated with the combination of the E1, E2, E6, and E7 genes were completely protected against viral challenge. These data indicated that intracutaneous genetic vaccination with the combination of the E1, E2, E6, and E7 genes can be an effective strategy for immunoprophylaxis of papillomavirus infection.  相似文献   

16.
17.
18.
19.
Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection. The protein profile at 8, 24, and 48 h post infection revealed that UL84 tightly associated with IE2-p86, and more viral and cellular proteins came into association with IE2-p86 with the progression of virus infection. A computational analysis of the protein-protein interaction network indicated that all of the 9 viral proteins and most of the cellular proteins identified in the study are interconnected to varying degrees. Of the cellular proteins that were confirmed to associate with IE2-p86 by immunoprecipitation, C1QBP was further shown to be upregulated by HCMV infection and colocalized with IE2-p86, UL84 and UL44 in the virus replication compartment of the nucleus. The IE2-p86 interactome network demonstrated the temporal development of stable and abundant protein complexes that associate with IE2-p86 and provided a framework to benefit future studies of various protein complexes during HCMV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号