首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical compounds can cause amplification of specific DNA sequences. DNA amplification may result in an enhanced production of gene products which help cells to cope with the chemicals. This may lead to a resistance of the cells toward the agent. Additionally, initiation of transformation or progression of transformed cells to tumorigenicity may also involve DNA amplification. Therefore, it is of interest to study the potential of chemicals to induce DNA amplification. This report focuses on the investigation of a variety of chemicals in 2 systems with which the amplification of viral DNA is measured within cells in culture. One model system comprises the measurement of SV40 DNA content in an SV40-transformed Chinese hamster cell line following chemical treatment. Antitumor agents as well as genotoxic and non-genotoxic compounds were studied in this system as a first step to determine the DNA amplification-inducing potential of a variety of differently acting chemical compounds. Also, a novel assay based on adeno-associated virus infection of cells is described. This system may offer the possibility of studying DNA amplification in a variety of different target cells. For the future, the need is stressed to develop and analyze versatile systems to study amplification of specific target genes in untransformed cells and in tumor cells.  相似文献   

2.
3.
UV radiation and other carcinogenic agents induce an increase in DNA-binding activity to the early domain of the simian virus 40 (SV40) minimal origin in both SV40-permissive and SV40-nonpermissive cells. The increase is due to posttranslational modification of a preexisting protein, since it occurs in the presence of cycloheximide or anisomycin. Binding of this factor is an absolute requirement for the UV-induced SV40 DNA amplification in Co631 cells in vivo. A synthetic double-stranded oligonucleotide covering the early domain sequence totally blocked the UV-induced amplification in competition experiments. Point mutants of the sequence and unrelated oligonucleotides which could not bind the factor also did not block SV40 amplification. Inhibitors of protein synthesis caused an immediate increase of both early-domain factor activity (perhaps by prolonging mRNA half-life for the factor or for a modifying enzyme) and DNA amplification. The effects of UV and cycloheximide on SV40 amplification were superaddition.  相似文献   

4.
A model experimental system based on SV40-transformed Chinese hamster embryo cells and a highly sensitive in situ hybridization procedure was designed. Exposure of the cells to different categories of chemical and physical carcinogens resulted in the induction of SV40 DNA synthesis in the treated cells. Although the carcinogen-mediated amplification of SV40 DNA sequences is regulated by the viral “A” gene, neither infectious virus nor complete viral DNA molecules were rescued from the treated cells. A heterogenous collection of DNA molecules containing SV40 sequences was generated following treatment with DMBA. Restriction enzyme analysis of the amplified DNA molecules in the Hirt supernatant revealed that not all sequences in the integrated SV40 inserts are present. The possibility that the amplification of SV40 sequences is a reflection of a general gene amplification phenomenon mediated by carcinogens is discussed.  相似文献   

5.
Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of six HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensible for SV40 DNA amplification. Our results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.  相似文献   

6.
Protein blotting: principles and applications   总被引:70,自引:0,他引:70  
Extensive studies on the DNA tumor virus Simian Virus 40 (SV40) have provided a wealth of information regarding the genome organization, regulation of viral gene expression, and the mechanism of DNA replication. SV40 can grow lytically in permissive monkey cells or the viral DNA can integrate into the host genome of nonpermissive rodent cells causing morphological transformation. The viral DNA exists as a minichromosome within the nuclei of lytically infected cells and, as a consequence of DNA replication, there is a significant amplification of the viral genome during infection. These properties suggested that SV40 could be developed as a transducing vector to introduce exogenous DNA into mammalian cells and to express this foreign DNA during the SV40 infectious cycle. In this article the properties of SV40 virus vectors and SV40 hybrid plasmid vectors are described and contrasted.  相似文献   

7.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

8.
9.
10.
11.
Determining the activity of viral and cellular regulatory elements in B or T lymphoid cell lines would facilitate appropriate utilization of the regulatory sequences for gene transfer- and expression-dependent applications. We have compared the activity of the CMV, RSV and SV40 viral promoter/enhancers as well as the Vlambda1 cellular promoter, in three B cell lines (REH, SMS-SB, C3P), three T cell lines (CEM, Jurkat, ST-F10), and two non-lymphoid cell lines (K-562, HeLa) using the luciferase reporter gene. In B cell lines, the activity of the CMV promoter/enhancer construct was the highest ranging from 10- to 113-fold greater than that of SV40. In contrast, in T cell lines the RSV promoter/enhancer activity was 11-65-fold higher than that of SV40. The Vlambda1 promoter activity was close to that of SV40 promoter/enhancer in most of the cell lines tested. We conclude that CMV and RSV promoter/enhancers contain stronger regulatory elements than do the SV40 and Vlambda1 for expression of genes in lymphoid cell lines.  相似文献   

12.
Many types of human cells cultured in vitro are generally semipermissive for simian virus 40 (SV40) replication. Consequently, subpopulations of stably transformed human cells often carry free viral DNA, which is presumed to arise via spontaneous excision from an integrated DNA template. Stably transformed human cell lines that do not have detectable free DNA are therefore likely to harbor harbor mutant viral genomes incapable of excision and replication, or these cells may synthesize variant cellular proteins necessary for viral replication. We examined four such cell lines and conclude that for the three lines SV80, GM638, and GM639, the cells did indeed harbor spontaneous T-antigen mutants. For the SV80 line, marker rescue (determined by a plaque assay) and DNA sequence analysis of cloned DNA showed that a single point mutation converting serine 147 to asparagine was the cause of the mutation. Similarly, a point mutation converting leucine 457 to methionine for the GM638 mutant T allele was found. Moreover, the SV80 line maintained its permissivity for SV40 DNA replication but did not complement the SV40 tsA209 mutant at its nonpermissive temperature. The cloned SV80 T-antigen allele, though replication incompetent, maintained its ability to transform rodent cells at wild-type efficiencies. A compilation of spontaneously occurring SV40 mutations which cannot replicate but can transform shows that these mutations tend to cluster in two regions of the T-antigen gene, one ascribed to the site-specific DNA-binding ability of the protein, and the other to the ATPase activity which is linked to its helicase activity.  相似文献   

13.
High level transient gene expression in lymphoid cells has always been challenging because of the difficulty to efficiently transfect such cells. This has precluded any attempt to clone cDNA encoding proteins by means of their specific biological function in lymphoid cells. We have developed a very efficient transient eukaryotic expression system analogous to the well-known expression system in COS cells. Firefly luciferase and human CD2 genes were used as reporter genes and cloned into the eukaryotic shuttle vector pCDM8 which contains the strong cytomegalovirus promoter and the SV40 origin of replication for autonomous plasmid replication in permissive host cells that express the large SV40 T Antigen. Co-transfection of the reporter plasmids together with an SV40 T Ag expressing plasmid resulted in the several fold amplification of either the Luc activity or the cell surface expression of the CD2 marker in a transient assay. The level of amplification was dependent on the strength of the promoter used to drive the SV40 T Ag expression and was correlated with the extent of autonomous replication of the reporter plasmid in transfected cells. This highly efficient transient gene expression by SV40 T Ag boost was suitable to several human cell lines, making this system of general interest for expression cloning strategies or other gene transfer application that need high level expression.  相似文献   

14.
15.
16.
《Gene》1997,184(2):189-195
We describe here a long-polymerase chain reaction (PCR) method that can be used to amplify complete simian virus 40 (SV40) DNA with high fidelity, and we show that authentic, viable virus can be produced from molecular clones of the PCR-amplified viral DNAs. A commercial long-PCR kit that employed a combination of Taq and GB-D polymerases was used, together with a pair of overlapping primers that recognized a unique EcoRI site in the SV40 genome. Efficient amplification required linearization of the circular SV40 genomic DNAs with EcoRI. Entire SV40 genomes were successfully PCR-amplified from an SV40 plasmid and from two different SV40-infected cell lysates and were cloned into pUC-19. Three separate segments of the cloned viral genomes were DNA sequenced, and no nucleotide changes relative to the parental virus were detected, suggesting that the viral DNAs had been amplified with high fidelity. Each PCR clone was infectious, and no differences were detected in the growth characteristics of viruses derived from these clones as compared to the original viral strain. The procedure we utilized shortens and simplifies the molecular cloning of small double-stranded DNA viruses and will be useful for viral diagnostic tests and for recovery of virus from clinical samples. The results of these experiments have broad implications, as the methodology is applicable to many systems.  相似文献   

17.
Negative regulation of viral enhancers in undifferentiated embryonic stem cells   总被引:127,自引:0,他引:127  
C M Gorman  P W Rigby  D P Lane 《Cell》1985,42(2):519-526
  相似文献   

18.
Iodine-125, in the form of 5-[125I]iododeoxyuridine (I-UdR), was incorporated into the DNA of SV40 transformed Chinese hamster embryo cells. Disintegration of the 125I led to increased cell killing with increasing dose as measured by the colony-forming ability of single cells. The D37 (the dose at which 37% of the cells survive) amounts to 95 decays per cell, corresponding to 0.66 Gy. Variations in the copy number of specific DNA sequences was measured by using dispersed cell blotting with sensitive DNA hybridizations. A 13-fold amplification of the viral DNA sequences (SV40) and a twofold amplification of two cellular oncogenes of the ras-family (Ki-ras and Ha-ras) were found. Other cellular genes, like the alpha-actin gene, were not amplified, and no variation in gene copy number was detected after incubation of cells with cold I-UdR. We suggest the observed gene amplifications are induced by the densely ionizing radiation emitted by the decay of the incorporated 125I atoms.  相似文献   

19.
20.
The simian virus 40 (SV40) large-T antigen is essential for SV40 DNA replication and for late viral gene expression, but the role of the SV40 small-t antigen in these processes is still unclear. We have previously demonstrated that small t inhibits SV40 DNA replication in vitro. In this study, we investigated the effect of small t on SV40 replication in cultured cells. CV1 monkey cell infection experiments indicated that mutant viruses that lack small t replicate less efficiently than the wild-type virus. We next microinjected CV1 cells with SV40 DNA with and without purified small-t protein and analyzed viral DNA replication efficiency by Southern blotting. Replication of either wild-type SV40 or small-t deletion mutant DNA was increased three- to fivefold in cells coinjected with purified small t. Thus, in contrast to our in vitro observation, small t stimulated viral DNA replication in vivo. This result suggests that small t has cellular effects that are not detectable in a reconstituted in vitro replication system. We also found that small t stimulated progression of permissive monkey cells--but not of nonpermissive rodent cells--from G0-G1 to the S phase of the cell cycle, possibly leading to an optimal intracellular environment for viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号