首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genealogies estimated from haplotypic genetic data play a prominent role in various biological disciplines in general and in phylogenetics, population genetics and phylogeography in particular. Several software packages have specifically been developed for the purpose of reconstructing genealogies from closely related, and hence, highly similar haplotype sequence data. Here, we use simulated data sets to test the performance of traditional phylogenetic algorithms, neighbour-joining, maximum parsimony and maximum likelihood in estimating genealogies from nonrecombining haplotypic genetic data. We demonstrate that these methods are suitable for constructing genealogies from sets of closely related DNA sequences with or without migration. As genealogies based on phylogenetic reconstructions are fully resolved, but not necessarily bifurcating, and without reticulations, these approaches outperform widespread 'network' constructing methods. In our simulations of coalescent scenarios involving panmictic, symmetric and asymmetric migration, we found that phylogenetic reconstruction methods performed well, while the statistical parsimony approach as implemented in TCS performed poorly. Overall, parsimony as implemented in the PHYLIP package performed slightly better than other methods. We further point out that we are not making the case that widespread 'network' constructing methods are bad, but that traditional phylogenetic tree finding methods are applicable to haplotypic data and exhibit reasonable performance with respect to accuracy and robustness. We also discuss some of the problems of converting a tree to a haplotype genealogy, in particular that it is nonunique.  相似文献   

2.
Despite the importance of Darwin's finches to the development of evolutionary theory, the origin of the group has only recently been examined using a rigorous, phylogenetic methodology that includes many potential outgroups. Knowing the evolutionary relationships of Darwin's finches to other birds is important for understanding the context from which this adaptive radiation arose. Here we show that analysis of mitochondrial DNA sequence data from the cytochrome b gene confirm that Darwin's finches are monophyletic. In addition, many taxa previously proposed as the sister taxon to Darwin's finches can be excluded as their closest living relative. Darwin's finches are part of a well-supported monophyletic group of species, all of which build a domed nest. All but two of the non-Darwin's finches included in this clade occur on Caribbean islands and most are Caribbean endemics. These close relatives of Darwin's finches show a diversity of bill types and feeding behaviors similar to that observed among Darwin's finches themselves. Recent studies have shown that adaptive evolution in Darwin's finches occurred relatively quickly. Our data show that among the relatives of Darwin's finches, the evolution of bill diversity was also rapid and extensive.  相似文献   

3.
Molecular phylogenetic relationships among 45 members of the Helicoidea (Gastropoda: Stylommatophora) were examined using partial mitochondrial 16S rRNA sequences. Phylogenetic relationships were inferred using maximum parsimony, maximum likelihood and Bayesian methods. The reconstructed phylogenies showed a good degree of support for more recent branches, but gave little support to deeper nodes. Mitochondrial rDNA data further confirmed monophyletic status of helicids, recognized monachine hygromiid and bradybaenid clades and resolved a number of relationships in the helicelline hygromiids. With the respect to the latter assemblage, most of the anatomically based groups are confirmed, corroborating the diagnostic value of the dart-sac complex and a close affinity between Ichnusomunda sacchii and species of the genus Cernuella . Nevertheless, some well resolved branches challenge previous systematic arrangements, grouping species previously placed in different arrangements. In particular, support was not found for the monophyly of helicelline hygromiids with pedal penial innervation. Possible explanations for these incongruencies are suggested. 16S sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient radiations in the Helicoidea. It will be valuable to combine the 16S data with other gene sequences to estimate basal relationships.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 501–512.  相似文献   

4.
This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu Buckland-Nicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters.  相似文献   

5.
6.

Gobioidei is a suborder of perciform fishes with about 2000 species distributed worldwide. Despite the evolutionary and ecological importance of gobioids, their phylogenetic inter- and intrarelationships are still poorly understood. Only a few studies (either morphological or molecular) have tackled the phylogeny of Gobioidei as a whole. Of these, only six studies thus far have addressed gobioid intrarelationships based on molecular data (each using different taxon sampling, genes, outgroups and method of phylogenetic inference), yielding contrasting results regarding the phylogenetic relationships among major lineages. In this study, we have reanalysed data from four of these molecular phylogenetic studies of Gobioidei under standardization criteria (same outgroup and methods of phylogenetic inference) in order to assess the robustness of their results, as well as to identify which parts of the gobioid tree are least resolved. Results from all datasets reanalysed in this study are generally similar to those of the respective original studies, and suggest broad patterns of phylogenetic relationships among gobioid lineages. However, there are numerous topological discrepancies among the four studies, support is low for many phylogenetic relationships and topology tests are unable to reject the vast majority of alternative topologies tested. The concatenation of datasets yields a relatively robust phylogeny of major lineages of Gobioidei, but there are some issues of overlap and missing data, which are ameliorated with the inclusion of additional homologous sequences from GenBank that increase dataset completeness. Because both monophyly of major gobioid groups and phylogenetic relationships among them cannot be fully resolved, it is clear that further phylogenetic research is needed, and this should be accompanied by a major taxonomic revision of the Gobioidei. Nevertheless, even with the relatively unstable nature of the available molecular phylogenies, there are some monophyletic units that can be identified, and a basic structure of the gobioid tree appears evident.  相似文献   

7.
We present the first estimate of the phylogenetic relationships among all 916 extant and nine recently extinct species of bats Mammalia: Chiroptera), a group that accounts for almost one-quarter of extant mammalian diversity. This phylogeny was derived by combining 105 estimates of bat phylogenetic relationships published since 1970 using the supertree construction technique of Matrix Representation with Parsimony (MRP). Despite the explosive growth in the number of phylogenetic studies of bats since 1990, phylogenetic relationships in the order have been studied non-randomly. For example, over one-third of all bat systematic studies to date have locused on relationships within Phyllostomidae, whereas relationships within clades such as Kerivoulinae and Murinae have never been studied using cladistic methods. Resolution in the supertree similarly differs among clades: overall resolution is poor (46.4%, of a fully bifurcating solution) but reaches 100% in some groups (e.g. relationships within Mormoopidae). The supertree analysis does not support a recent proposal that Microchiroptera is paraphyletic with respect to Megachiroptera, as the majority of source topologies support microbat monophyly. Although it is not a substitute for comprehensive phylogenetic analyses of primary molecular and morphological data, the bat supertree provides a useful tool for future phylogenetic comparative and macroevolutionary studies. Additionally, it identifies clades that have been little studied, highlights groups within which relationships are controversial, and like all phylogenetic studies, provides preliminary hypotheses that can form starting points for future phylogenetic studies of bats.  相似文献   

8.
The phylogenetic position of two putative new species of the collembolan genus Orchesella was investigated by comparison with four other Italian species of the genus using a fragment of the mitochondrial gene encoding for subunit I of cytochrome c oxidase (COI). The gene showed the well-known A + T bias, typical of insect mitochondrial DNA, although A + T content was not as high as that observed in species belonging to more derived insect orders. The large number of variable sites in 3rd codon positions (85.2% variable) suggested that these sites contain significant homoplasy due to multiple hits. Despite the lack of morphological differentiation, the COI portion examined shows remarkable levels of genetic divergence between the putative species and their closest relatives. Phylogenetic analysis suggests that one of the putative new species is related to O. villosa, whereas the other is included in a clade with O. cincta and O. ranzii. The species O. chiantica appears to be related to O. villosa, agreeing with previous allozyme data.  相似文献   

9.
The cyprinid fish fauna of North America is relatively large, with approximately 300 species, and all but one of these are considered phoxinins. The phylogenetic relationships of the North American phoxinins continue to pose difficulties for systematists. Results of morphological analyses are not consistent owing to differences interpreting and coding characters. Herein, we present phylogenetic analyses of mitochondrial 12S and 16S ribosomal RNA sequence data for representatives of nearly all genera of North American phoxinins. The data were analysed using parsimony, weighted parsimony, maximum likelihood and bayesian analyses. Results from weighted parsimony, likelihood and the bayesian analysis are largely consistent as they all account for differing substitution rates between transitions and transversions. Several major clades within the fauna can be recognized and are strongly supported by all analyses. These include the western clade, creek chub–plagopterin clade and the open posterior myodome clade. The shiner clade is nested in the open posterior myodome clade and is the most species-rich clade of North American phoxinins. Relationships within this clade were not well resolved by our analyses. This may reflect the inability of the mitochondrial RNA genes to resolve recent speciation events or taxon sampling within the shiner clade.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 63–80.  相似文献   

10.
Over the past decade or so it has become increasingly popular to use reconstructed evolutionary trees to investigate questions about the rates of speciation and extinction. Although the methodology of this field has grown substantially in its sophistication in recent years, here I will take a step back to present a very simple model that is designed to investigate the relatively straightforward question of whether the tempo of diversification (speciation and extinction) differs between two or more phylogenetic trees, without attempting to attribute a causal basis to this difference. It is a likelihood method, and I demonstrate that it generally shows type I error that is close to the nominal level. I also demonstrate that parameter estimates obtained with this approach are largely unbiased. As this method can be used to compare trees of unknown relationship, it will be particularly well‐suited to problems in which a difference in diversification rate between clades is suspected, but in which these clades are not particularly closely related. As diversification methods can easily take into account an incomplete sampling fraction, but missing lineages are assumed to be missing at random, this method is also appropriate for cases in which we have hypothesized a difference in the process of diversification between two or more focal clades, but in which many unsampled groups separate the few of interest. The method of this study is by no means an attempt to replace more sophisticated models in which, for instance, diversification depends on the state of an observed or unobserved discrete or continuous trait. Rather, my intention is to provide a complementary approach for circumstances in which a simpler hypothesis is warranted and of biological interest.  相似文献   

11.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

12.
The statistical framework of maximum likelihood estimation is used to examine character weighting in inferring phylogenies. A simple probabilistic model of evolution is used, in which each character evolves independently among two states, and different lineages evolve independently. When different characters have different known probabilities of change, all sufficiently small, the proper maximum likelihood method of estimating phylogenies is a weighted parsimony method in which the weights are logarithmically related to the rates of change. When rates of change are taken extremely small, the weights become more equal and unweighted parsimony methods are obtained. When it is known that a few characters have very high rates of change and the rest very low rates, but it is not known which characters are the ones having the high rates, the maximum likelihood criterion supports use of compatibility methods. By varying the fraction of characters believed to have high rates of change one obtains a ‘threshold method’ whose behavior depends on the value of a parameter. By altering this parameter the method changes smoothly from being a parsimony method to being a compatibility method. This provides us with a spectrum of intermediates between these methods. These intermediate methods may be of use in analysing real data.  相似文献   

13.
The statistical framework of maximum likelihood estimation is used to examine character weighting in inferring phylogenies. A simple probabilistic model of evolution is used, in which each character evolves independently among two states, and different lineages evolve independently. When different characters have different known probabilities of change, all sufficiently small, the proper maximum likelihood method of estimating phylogenies is a weighted parsimony method in which the weights are logarithmically related to the rates of change. When rates of change are taken extremely small, the weights become more equal and unweighted parsimony methods are obtained.
When it is known that a few characters have very high rates of change and the rest very low rates, but it is not known which characters are the ones having the high rates, the maximum likelihood criterion supports use of compatibility methods. By varying the fraction of characters believed to have high rates of change one obtains a 'threshold method' whose behavior depends on the value of a parameter. By altering this parameter the method changes smoothly from being a parsimony method to being a compatibility method. This provides us with a spectrum of intermediates between these methods. These intermediate methods may be of use in analysing real data.  相似文献   

14.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   

15.
The power of maximum likelihood tests of positive selection on protein-coding genes depends heavily on detecting and accounting for potential biases in the studied data set. Although the influence of transition:transversion and codon biases have been investigated in detail, little is known about how inaccuracy in the phylogeny used during the calculations affects the performance of these tests. In this study, 3 empirical data sets are analyzed using sets of simulated topologies corresponding to low, intermediate, and high levels of phylogenetic uncertainty. The detection of positive selection was largely unaffected by errors in the underlying phylogeny. However, the number of sites identified as being under positive selection tended to be overestimated.  相似文献   

16.
We examine whether phylogenetic methods provide biased estimates of tree shape with respect to the random branching model. We investigate the performance of five commonly used phylogenetic methods using computer simulation: (1) maximum parsimony; (2) neighbor joining; (3) UPGMA with an outgroup taxon; (4) UPGMA without an outgroup taxon; and (5) maximum likelihood. All methods provide estimates of tree shape that are, on average, more asymmetrical than the true tree, especially when rates of evolution are high. We suggest a simple explanation for the bias and propose a modified test of tree shape that corrects for it.  相似文献   

17.
基于rDNA ITS序列对绒泡菌目黏菌系统发育的探讨   总被引:1,自引:0,他引:1  
李倩  闫淑珍  陈双林 《菌物学报》2015,34(3):424-433
绒泡菌目Physarida是黏菌纲Myxogastria最大的一个目,对其系统发育关系的研究一直是根据形态特征。为了从分子水平探讨绒泡菌目乃至黏菌纲的系统发育关系,以黏菌r DNA ITS通用引物对绒泡菌目5属8种黏菌的r DNA ITS进行扩增和测序,结合Gen Bank中已有的黏菌r DNA ITS序列,利用贝叶斯推断法(Bayesian inference,BI)和最大似然法(Maximum likelihood,ML)构建系统发育树。结果表明:绒泡菌目不同物种的r DNA ITS区在碱基组成和长度上差异明显,长度为777–1 445bp,G+C mol%在53.4%–61.9%之间。绒泡菌目与发网菌目Stemonitida聚类为两个明显的分支,在绒泡菌目分支上,绒泡菌科Physaraceae和钙皮菌科Didymiaceae各聚为一支,支持了形态学上以孢丝是否具有石灰质为依据区分这两个科的观点。由多份不同地理来源的鳞钙皮菌Didymium squamulosum材料组成的钙皮菌科又形成3个分支,证实了这个形态种是由地域来源广泛、繁殖亲和性各异和遗传变异较大的不同生物种组成的复合体。  相似文献   

18.
Several swiftlet species echolocate to navigate in the darkness of their nesting caves. We investigated whether swiftlets' echo clicks and social vocalizations differed among species and whether they could be used in phylogenetic inference. We incorporated echo clicks of eight swiftlet species and social vocalizations of 27 echolocating and nonecholocating swifts and swiftlets. Characters in the frequency and time domain were used and analysed using nonparametric multivariate analysis of variance and stepwise discriminant analysis. We performed maximum parsimony analyses and character mapping to investigate phylogenetic signal and evolutionary patterns of swiftlet vocalizations. Echo clicks were species-specific. As well as in navigation, they may be used in recognition of conspecifics. Social vocalizations were species-specific also. However, the vocalizations contained no phylogenetic interpretable information. Maximum parsimony trees of echo clicks and of social vocalizations were almost completely unresolved. Moreover, resolved branches showed no congruence to a DNA-based tree that had been obtained previously. Mapping of the vocalization characters on the DNA-based tree revealed no consistent phylogenetic patterns. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 631–643.  相似文献   

19.
Seventeen species, one subspecies and one variety of Dioscorea sect. Stenophora Uline were investigated for their phylogenetic relationships based on a sequence analysis of chloroplast matK and rbcL genes and trnL-F intergenic spacer by maximum parsimony and maximum likelihood methods. The results showed that (a) sect. Stenophora was a strongly supported monophyletic group; (b) D. rockii, D. membranacea, D. banzhuana, and D. simulans formed a moderately supported monophyletic group, and D. prazeri was weakly supported to be sister to this group; (c) D. althaeoides and D. nipponica ssp. nipponica formed a moderately supported clade, and D. nipponica ssp. rosthornii was not a member of this clade; (d) D. zingiberensis and D. sinoparviflora showed a moderate to strong sister relationship; and (e) D. collettii var. hypoglauca and D. collettii var. collettii were sister to each other, but with only weak support.  相似文献   

20.
The SMC proteins are found in nearly all living organisms examined, where they play crucial roles in mitotic chromosome dynamics, regulation of gene expression, and DNA repair. We have explored the phylogenetic relationships of SMC proteins from prokaryotes and eukaryotes, as well as their relationship to similar ABC ATPases, using maximum-likelihood analyses. We have also investigated the coevolution of different domains of eukaryotic SMC proteins and attempted to account for the evolutionary patterns we have observed in terms of available structural data. Based on our analyses, we propose that each of the six eukaryotic SMC subfamilies originated through a series of ancient gene duplication events, with the condensins evolving more rapidly than the cohesins. In addition, we show that the SMC5 and SMC6 subfamily members have evolved comparatively rapidly and suggest that these proteins may perform redundant functions in higher eukaryotes. Finally, we propose a possible structure for the SMC5/SMC6 heterodimer based on patterns of coevolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号