首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of rice (Oryza saliva L.) and Arabidopsis (A. thaliana L.) were cultivated for 68.5 hr in the RICE experiment on board during Space Shuttle STS 95 mission, and changes in their growth and morphology were analyzed. Microgravity in space stimulated elongation growth of both rice coleoptiles and Arabidopsis hypocotyls by making their cell walls extensible. In space, rice coleoptiles showed an inclination toward the caryopsis in the basal region and also a spontaneous curvature in the same direction in the elongating region. These inclinations and curvatures were more prominent in the Koshihikari cultivar compared to a dwarf cultivar, Tan-ginbozu. Rice roots elongated in various directions including into the air on orbit, but two thirds of the roots formed a constant angle with the axis of the caryopsis. In space, Arabidopsis hypocotyls also elongated in a variety of directions and about 10% of the hypocotyls grew into the agar medium. No clear curvatures were observed in the elongating region of Arabidopsis hypocotyls. Such a morphology of both types of seedlings was fundamentally similar to that observed on a 3 D clinostat. Thus, it was confirmed by the RICE experiment that rice and Arabidopsis seedlings perform an automorphogenesis under not only simulated but also true microgravity conditions.  相似文献   

2.
Elongation of seminal and lateral roots of rice seedlings was markedly inhibited by high ammonium levels in growth medium. However, high exogenous nitrate concentrations had little inhibitory effect on root growth. The objective of this study was to elucidate the relationship between inhibition of rice root growth induced by high ammonium conditions and ammonium assimilation in the seedlings. Activity of glutamine synthetase (GS) was kept at a low level in the seminal roots of the seedlings grown under high nitrate levels. In contrast, high ammonium levels significantly enhanced the GS activity in the roots, so that Gln abundantly accumulated in the shoots. These results indicate that ammonium assimilation may be activated in the seminal roots under high ammonium conditions. Application of methionine sulfoximine (MSO), an inhibitor of GS, relieved the repression of the seminal root elongation induced by high ammonium concentrations. However, the elongation of lateral roots remained inhibited even under the same condition. Furthermore, MSO drastically increased ammonium level and remarkably decreased Gln level in the shoots grown under high ammonium conditions. These results show that, for rice seedlings, an assimilatory product of ammonium, and not ammonium itself, may serve as an endogenous indicator of the nitrogen status involved in the inhibition of seminal root elongation induced by high levels of exogenous ammonium.  相似文献   

3.
Oryza sativa L.) and Arabidopsis (A. thaliana L.) were cultivated for 68.5 hr in the RICE experiment on board during Space Shuttle STS-95 mission, and changes in their growth and morphology were analyzed. Microgravity in space stimulated elongation growth of both rice coleoptiles and Arabidopsis hypocotyls by making their cell walls extensible. In space, rice coleoptiles showed an inclination toward the caryopsis in the basal region and also a spontaneous curvature in the same direction in the elongating region. These inclinations and curvatures were more prominent in the Koshihikari cultivar compared to a dwarf cultivar, Tan-ginbozu. Rice roots elongated in various directions including into the air on orbit, but two thirds of the roots formed a constant angle with the axis of the caryopsis. In space, Arabidopsis hypocotyls also elongated in a variety of directions and about 10% of the hypocotyls grew into the agar medium. No clear curvatures were observed in the elongating region of Arabidopsis hypocotyls. Such a morphology of both types of seedlings was fundamentally similar to that observed on a 3-D clinostat. Thus, it was confirmed by the RICE experiment that rice and Arabidopsis seedlings perform an automorphogenesis under not only simulated but also true microgravity conditions. Received 13 September 1999/ Accepted in revised form 12 October 1999  相似文献   

4.
Summary

Sorghum bicolor L. (cv. Tegemeo) seedlings were grown for nine days in soil at field capacity packed to give a uniform penetration resistance (PR) of either 0.25, 1.00 or 1.75 MPa. Root biomass was not significantly affected by soil PR treatment. However, as PR increased to 1.75 MPa, the diameter of the seminal root axis increased by 52% whilst its length decreased by 30%. Shoot growth, in terms of oven dry (OD) weight and photo-synthetic area, was reduced in both the 0.25 MPa and 1.75 MPa treatments compared to the 1.00 MPa treatment. A reduced nutrient, water or oxygen supply to the roots were discounted as possible causes of the root and shoot responses to soil PR. It is suggested that the changes in root morphology between treatments were a direct result of the changes in soil PR. For shoot growth, in the 0.25 MPa treatment it is suggested that shoot growth was reduced as a result of an increase in the carbon sink strength of the roots.  相似文献   

5.
The effects of sugars on root growth and on development of adventitious roots were analyzed in Arabidopsis thaliana. Seeds were sown on agar plates containing 0.0–5.0% sugars and placed vertically in darkness (DD) or under long day (LD, 16 h:8 h) conditions, so that the seedlings were constantly attached to the agar medium. In the sucrose-supplemented medium, seedlings showed sustained growth in both DD and LD. However, only dark-grown seedlings developed adventitious roots from the elongated hypocotyl. The adventitious roots began to develop 5 days after imbibition and increased in number until day 11. They could, however, be initiated at any position along the hypocotyl, near the cotyledon or the primary root. They were initiated in the pericycle in the same manner as ordinary lateral roots. Sucrose, glucose and fructose greatly stimulated the induction of adventitious roots, but mannose or sorbitol did not. Sucrose at concentrations of 0.5–2.0% was most effective in inducing adventitious roots, although 5.0% sucrose suppressed induction. Direct contact of the hypocotyl with the sugar-supplemented agar medium was indispensable for the induction of adventitious roots. Electronic Publication  相似文献   

6.
Cadmium (Cd) is toxic to crown roots (CR), which are essential for maintaining normal growth and development in rice seedlings. Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in plant root organogenesis. Here, the effects of Cd on endogenous NO content and root growth conditions were studied in rice seedlings. Results showed that similar to the NO scavenger, cPTIO, Cd significantly decreased endogenous NO content and CR number in rice seedlings, and these decreases were recoverable with the application of sodium nitroprusside (SNP, a NO donor). Microscopic analysis of root collars revealed that treatment with Cd and cPTIO inhibited CR primordia initiation. In contrast, although SNP partially recovered Cd-caused inhibition of CR elongation, treatment with cPTIO had no effect on CR elongation. l-NMMA, a widely used nitric oxide synthase (NOS) inhibitor, decreased endogenous NO content and CR number significantly, while tungstate, a nitrate reductase (NR) inhibitor, had no effect on endogenous NO content and CR number. Moreover, enzyme activity assays indicated that treatment with SNP inhibited NOS activity significantly, but had no effect on NR activity. All these results support the conclusions that a critical endogenous NO concentration is indispensable for rice CR primordia initiation rather than elongation, NOS is the main source for endogenous NO generation, and Cd decreases CR number by inhibiting NOS activity and thus decreasing endogenous NO content in rice seedlings.  相似文献   

7.
The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact soil (1.4 g cm-3; penetration resistance 1.0 MPa), to evaluate the contribution of the cap to decreasing the impedance to root growth. Root elongation rate and diameter were the same for decapped and intact roots when the plants were grown in loose soil. In compacted soil, however, the elongation rate of decapped roots was only about half that of intact roots, whilst the diameter was 30% larger. Root penetration resistances of intact and decapped seminal axis were 0.31 and 0.52 MPa, respectively, when the roots were grown in compacted soil. These results indicated that the presence of a root cap alleviates much of the mechanical impedance to root penetration, and enables roots to grow faster in compacted soils.  相似文献   

8.
Field soils contain localized zones of larger penetration resistance within peds and compacted layers, while cracks and biopores offer low resistance pathways to roots. Root responses to such localized conditions have not been investigated in detail. This study examined what happens to the root elongation rate when roots grew through a layer of hard soil into a layer of looser soil for a 4 day period. The experiment was performed twice; firstly with the shoot in continuous darkness, and secondly with it exposed to a day-night cycle to prevent etiolation of the shoot. Pea seedlings were grown in columns of a sandy loam soil which was packed to bulk densities of 0.85, 1.1, 1.3 or 1.4 Mg/m3 in the top layer and 0.85 Mg/m3 in the bottom layer. The root elongation rate in the top layer of 1.4 Mg/m3 soil (penetrometer resistance=1.8 MPa) was only 55% of the elongation rate in the top layer of 0.85 Mg/m3 soil (penetrometer resistance=0.06 MPa). The elongation rate of roots that had grown through the top layer of 1.4 Mg/m3 soil into the bottom layer of loose soil was reduced by some residual effect of the mechanical impedance. The root elongation rate in the bottom layer of loose soil decreased as the penetrometer resistance of the top layer of soil increased. The daily elongation rate of the roots in the bottom layer that had grown through the 1.4 Mg/m3 soil averaged only about 65% of the elongation rate of the roots that had grown through the 0.85 Mg/m3 soil. This residual effect of mechanical impedance on root elongation persisted for at least 2 days and was more severe in the day-night cycle experiment than in the dark experiment. These results have important implications for modelling root elongation in any soil in which the soil strength changes with distance or with time.  相似文献   

9.
A technique has been developed for embedding several agarose gels (running gels), each of a different agarose concentration, within a single 1.5% agarose slab. Equal portions of a sample were placed at the origin of each running gel and were simultaneously subjected to electrophoresis. Protein within the running gels was detected by staining with Coomassie blue; 0.2% gels were the least concentrated gels that were stained without gel breakage. Using the above technique, the dependence of electrophoretic mobility on agarose concentration has been measured for bacteriophage T7 capsids and a capsid dimer.  相似文献   

10.
We analyzed the changes in growth and cell wall properties of roots of rice (Oryza sativa L. cv. Koshihikari) grown for 68.5, 91.5, and 136 h during the Space Shuttle STS-95 mission. In space, most of rice roots elongated in a direction forming a constant mean angle of about 55° with the perpendicular base line away from the caryopsis in the early phase of growth, but later the roots grew in various directions, including away from the agar medium. In space, elongation growth of roots was stimulated. On the other hand, some of elasticity moduli and viscosity coefficients were higher in roots grown in space than on the ground, suggesting that the cell wall of space-grown roots has a lower capacity to expand than the controls. The levels of both cellulose and the matrix polysaccharides per unit length of roots decreased greatly, whereas the ratio of the high molecular mass polysaccharides in the hemicellulose fraction increased in space-grown roots. The prominent thinning of the cell wall could overwhelm the disadvantageous changes in the cell wall mechanical properties, leading to the stimulation of elongation growth in rice roots in space. Thus, growth and the cell wall properties of rice roots were strongly modified under microgravity conditions during spaceflight.  相似文献   

11.
N C Stellwagen 《Biopolymers》1985,24(12):2243-2255
The electrophoresis of a series of DNA fragments ranging in size from 0.5 to 12 kilobase pairs, has been studied as a function of agarose gel concentration and electric field strength. The apparent mobility of all fragments decreased with decreasing electric field strength and with increasing gel concentration. When extrapolated to zero electric field strength and zero agarose concentration, the apparent mobility of all DNA fragments extrapolated to a common value (2.0 ± 0.1) × 10?4 cm2/V s. The square roots of the retardation coefficients of the various fragments were found to be linearly related to the root-mean-square radii of gyration of the fragments, as predicted by pore-size distribution theory. As predicted by reptation theory, the molecular weights of the various fragments were found to be linearly related to the reciprocal of the apparent mobilities. An equation is given for estimating the apparent pore size of agarose gels between 0.25 and 1.5% in concentration.  相似文献   

12.
Roots of intact wheat plants were grown for 7-12 d in stagnant nutrient solution, containing 0.1% agar, to mimic the lack of convection in waterlogged soil. Net K+ and P uptakes by seminal and nodal roots were measured separately using a split root system. For seminal roots in stagnant solution, net uptakes as a percentage of aerated roots were between 0% and 16% for P, while K+ ranged between 15% uptake and 54% loss. For the more waterlogging-tolerant nodal roots, net uptakes in stagnant nutrient solution, as a percentage of aerated roots, were 31-73% for P and 69-115% for K+. Elongation rates of nodal roots in stagnant nutrient were about 35-43% of those for roots in aerated solution. This partial inhibition occurred in these nodal roots despite their 15% porosity (v/v). Elevation of O2 partial pressures around the shoots to 40 kPa and then to 80 kPa substantially accelerated nodal root elongation in stagnant solution, demonstrating that most of the inhibition seen with ambient O2 around the shoots was associated with a restricted O2 supply to these nodal roots. Thus, in wheat nodal roots, with a partial pressure of 20 kPa O2 around the shoots, O2 diffusion from the shoots did not completely relieve the restrictions on elongation resulting from stagnancy in the nutrient solution. These results contrast with those in the literature for rice, in which roots function efficiently in stagnant solutions (0.1% agar). So, when wheat roots are aerenchymatous there are still restrictions to O2 diffusion in the gas space continuum between the atmosphere and the functional tissues of the roots. This poor acclimation must have been due to inefficiency of the aerenchymatous axes, which may include persistence of anoxic steles, and/or restricted O2 diffusion in other parts of the gas space continuum, in either the shoots and shoot-root junction or in the root tip.  相似文献   

13.
研究了添加外源褪黑素对水稻幼苗中Cd积累以及水稻体内Cd化学形态分布的影响.结果表明: Cd胁迫显著降低水稻幼苗地上部和根部的生物量,并且显著降低水稻叶片的叶绿素含量.适宜的外源褪黑素添加能明显提高Cd胁迫下水稻的地上部和根部生物量,降低水稻地上部和根部Cd含量.当Cd胁迫浓度为5 μmol·L-1时,添加20 μmol·L-1褪黑素使水稻地上部和根部Cd含量分别比对照处理降低48.4%和16.9%,添加100 μmol·L-1褪黑素水稻地上部和根部Cd含量分别降低67.5%和47.9%.添加外源褪黑素也显著降低了水稻体内Cd的转运效率.当Cd胁迫浓度为20 μmol·L-1时,添加20 和100 μmol·L-1褪黑素使水稻Cd的转运效率分别比对照降低24.4%和46.8%.通过逐步提取法对水稻幼苗Cd的化学结合形态进行分析发现,添加外源褪黑素使水稻体内氯化钠提取态Cd的比例提高,而水溶态Cd、乙醇提取态Cd的比例明显降低,说明添加褪黑素可促进水稻体内移动性较强的Cd形态向移动性较弱的Cd形态转移,从而降低水稻对Cd的吸收和转运.  相似文献   

14.
短期旱作促进水稻种子根的伸长。利用cDNA—AFLP技术分析种子根根尖在旱作条件下差异表达的基因,同时比较这些基因在种子根尖、侧根和不定根原基区的表达差异。在1640个片段中,70个在种子根根尖中受旱作诱导,其中24个被克隆并测序。2个基因分别编码丙酮酸脱氢酶激酶(PDK)和腺嘌吟转磷酸核糖基酶(APRT),并用电子拼接技术获得水稻的APRT全长cDNA;另一个经cDNA末端快速扩增法延长后仍无同源序列。Northern杂交验证了这3个基因的cDNA—AFLP表达谱。这是首次报告使用cDNA—AFLP技术研究水稻根组织的差异表达基因。  相似文献   

15.
Proteins regulated by gibberellin (GA) in rice were determined by proteome analysis. Proteins extracted from suspension culture cells of slr1, a constitutive GA response mutant of rice, were separated by two-dimensional polyacrylamide gel electrophoresis, and three proteins were greatly accumulated in the mutant. The most up-regulated protein was methylmalonate-semialdehyde dehydrogenase (MMSDH), and the amount of protein was 7-fold that of wild type. In this study, the function of MMSDH in rice was analyzed. MMSDH gene expression in suspension culture cells, roots, and leaf sheaths ofslr1 was higher than that in its wild-type. MMSDH expression in wild-type roots was increased by exogenous GA(3). Analyzed by in situ hybridization, MMSDH mRNA was expressed in root primordia of slr1, where cells are undergoing growth. MMSDH gene expression in the root zone of tissue differentiation was higher than in the elongation zone or meristem. Transgenic rice expressing antisense MMSDH showed that its seminal roots were thinner than that of control, and that the leaf sheath elongation was slightly inhibited compared to control. Concentrations of TCA cycle metabolites were decreased in the antisense plants as compared with the control plants, suggesting that acetyl-CoA was reduced in the antisense plants. These results suggest that one of the regulations by GA signal transduction including SLR1 is the expression of MMSDH, and that MMSDH may play a role in root development and leaf sheath elongation in rice.  相似文献   

16.
Gibberellin (GA) promoted rice (Oryza sativa L.) root elongation in a concentration-dependent manner with roots grown in 0.1 µm GA3 being 13.8% longer than controls. On the other hand, the roots of Tan-ginbozu, a semi-dwarf cultivar were 69.8% shorter in comparison with Nipponbare, a normal cultivar. Treatments with 10 µm uniconazole-P and 10 µm abscisic acid (ABA) caused decreases in root length in Tan-ginbozu by 44.6 and 79.2%, respectively. To investigate how GA influences rice root growth, proteome analysis techniques were applied. Extracted proteins were separated by two-dimensional polyacrylamide gel electrophoresis and analysed using an automated protein sequencer and mass spectrometer. Sixteen proteins show differences in accumulation levels as a result of treatment with GA3, uniconazole-P and ABA treatment and/or the difference between the semi-dwarf cultivar, Tan-ginbozu, and normal cultivars. Among these proteins, fructose-bisphosphate aldolase (EC 4.1.2.13) increased in roots treated with GA3, occurred in low levels in Tan-ginbozu roots, and decreased in roots treated with uniconazole-P or ABA. Moreover, roots from seedlings grown in 100 µm glucose were 9.1% longer than controls. These results indicate that increases in fructose-bisphosphate aldolase activity stimulate the glycolytic pathway and may play an important role in the GA-induced growth of roots.  相似文献   

17.
Root development is sensitive to environmental stimuli. We have recently reported that the light signal could promote the helical growth of seminal roots and drive the wavy root morphology in rice (Oryza sativa L.) young seedlings. The light-stimulated wavy roots were mostly performed in indica-type rice varieties (e.g., Taichung Native 1; TCN1) but not in japonica rice (e.g., Tainung 67; TNG67). Here, we demonstrated that the light-driven circumutation trajectory of TCN1 seminal roots could be changed if the seedling roots were grown in the medium containing high concentration of Phytagel. The data showed the root morphology would be modulated from wavy to curling when the Phytagel concentration was increased to 2%. However, the touch-stimulated curling root phenotype could not be performed in dark. In addition, the touch-induced curling roots were not appeared in the TNG67 rice cultivar. Although touch stimuli could not induce wavy/curling root phenotype in dark, it could modify the light-promoted helical growth to conduct curling roots in TCN1 rice seedlings. Thus, it was suggested that there is a crosstalk mechanism between touching-induced root curling and light-stimulated root waving.Key words: curling root, light stimuli, Oryza sativa, seminal root, touch stimuli, wavy rootRoot development and architecture could be changed to adapt the environmental conditions. Although root is usually grown in soil, it still exposes to light penetrated through soil particles. Some studies also indicated light can be conducted from shoots to roots through vascular bundle tissues.1,2 Recently, we have reported that the light-exposed seminal roots of indica-type rice, i.e., Taichung Native 1 (TCN1), presented the wavy morphology.3 The light-induced wavy root was not performed in japonica rice such as Tainung 67 (TNG67). Moreover, the circumutation of TCN1 seminal root tip were observed with time-lapse photography during root growth. According to the investigations among various rice varieties, it has been found that the root morphology was determined by helix period and circumnutation trajectory of root tip moving behavior.3 For example, the root tip movement of light-exposed TCN1 seedlings was a regular circumntation; therefore, the roots performed a regular wavy phenotype. In the other rice variety (i.e., Taichung Sen 17) with the curling root morphology, the circumnutation trajectory of seminal roots was significantly irregular compared with that was observed in TCN1. In the previous report, we showed that the auxin and oxylipins (i.e., ketol) played important roles to trigger the light-induced wavy roots.3The wavy root phenotype has also been observed in Arabidopsis when it was cultured on an agar-plate that was inclined at an angle of less than 90°.4 Based on the studies in Arabidopsis mutants, the performance of obstacle-touching induced wavy phenotype in seedlings roots was related to the functions of auxin efflux/influx carriers and some proteins involved in cell expansion.46 Moreover, ethylene also played a role to modulate the wavy root morphology.7In our previous experiments for studying the light-induced wavy roots, rice seedlings were cultured in water. In order to reveal the effect of interaction between light signal pathway and touch stimuli on rice seminal root growth, the sterilized rice seeds of TCN1 and TNG67 cultivars were germinated at 30°C in dark for 2 d and moved to continuous white light conditions (90 µmol m−2 s−1) to grow in vertically oriented square dishes containing 1.5% and 2% (w/v) Phytagel (Sigma, St. Louis, MO), respectively. The Phytagel percentage of the medium that we used here were higher than that was used for plant tissue culture in usual. After 3 d culture, the seminal roots of seedlings on 1.5% Phytagel performed wavy phenotype that was similar to the wavy roots observed in water-cultured seedlings under light conditions. Furthermore, the seminal roots in 2% Phytagel was grown to be a curling type (Fig. 1). On the other hand, no wavy or curling root morphology was presented in dark conditions either in 1.5% or 2% Phytagel-containing medium (Fig. 1). These results showed that root-Phytagel interaction could not directly induce the significant wavy or curling root morphology under dark growth conditions, but it could modify the light-stimulated helical growth and conduct the curling root morphology.Open in a separate windowFigure 1Effect of the interaction between light signals and touch stimuli on seminal root growth in rice seedlings. The TCN1 rice seeds were germinated in dark for 2 d and then germinated seeds were transferred to 1.5% and 2% Phytagel-containing plates for continuously growing. The root morphology was investigated after 3 d of Phytagelculture under light and dark conditions.Photomorphology of the seminal roots was diverse among rice varieties. Our previous data showed light-induced wavy roots could not be conducted in TNG67 rice cultivar.3 Here, we also observed the root growth of TNG67 rice seedlings on Phytagel-containing plates, and the results showed the straight root morphology in both light and dark conditions (data not shown). These results indicated that the phenomena of touch-stimulated curling roots were also rice variety-dependent.Based on above mentioned results, it was suggested that mechanisms of root-gel interaction for conducting curling phenotype was highly correlated with the transduction pathway of light signal to induce root waving. This hypothesis was supported by the observation on physiological mechanisms of light-induced wavy roots in rice plants and the obstacle-touching stimulated wavy roots in Arabidopsis. Our previous observation in rice plants suggested that auxin polar transport was essential for light-induced root waving and fatty acid oxygenation was involved to the mechanism of root waving in light.3 In Arabidopsis, auxin polar transport was also indicated to play a role in obstacle-touching stimulated root waving.8,9 In addition, wavy roots of Arabidopsis could be induced by several products of fatty acid oxygenation, i.e., ketols, ketones and hydroxides.10In conclusion, both light signal and touch stimuli were the important environmental cues to guide root growth and determine root morphology. Touch stimuli were able to modify the trajectory of light-induced root waving. Phenomena of both light-induced wavy roots and touch-stimulated curling roots were rice variety-dependent. Furthermore, it was suggested that touch-induced signaling may be associated with the light-induced signal pathway to conduct curling phenotype in seminal roots of rice seedlings.  相似文献   

18.
在用散弹 (shotgun)法测定水稻 (OryzasativaL .ssp .indica)基因组全序列的过程中 ,叶绿体和线粒体DNA的污染问题非常严峻 .应用脉冲场电泳 (PFGE)技术对水稻基因组DNA进行纯化 ,结果表明它能够有效去除叶绿体和线粒体DNA ,使其污染率从 3%降低到 0 2 % .同时 ,比较了水稻绿苗和黄化苗的DNA得率 ,以及HB法和NIB法制备大分子质量(HMW)DNA的异同 .最后提出一套制备水稻基因组DNA的方法 ,包括黄化苗培养 ;细胞核的分离、包埋和裂解 ;脉冲场电泳纯化、回收聚集在低熔点 (LMP)胶中的水稻HMWDNA .用该方法所得的水稻基因组DNA ,纯度高 (无叶绿体和线粒体DNA污染 )、基因组完整 (机械剪切和降解少 )、回收率高 (操作过程中DNA损失少 ) .另外 ,首次报道在融化的低熔点(LMP)胶中对水稻HMWDNA于 38℃进行超声波处理 ,能够获得用于shotgun文库和梯度文库构建所需要的各种DNA片段(1 5~ 3kb ,3~ 12kb) ,并且效果优于在TE中进行操作  相似文献   

19.
Excessive use of nitrogen (N) fertilizer has increased ammonium (NH4+) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH4+ toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH4+ concentrations above 0.75 mM inhibited the growth of rice and caused NH4+ accumulation in both shoots and roots. Use of excessive NH4+ also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH4+ conditions, exogenous γ‐aminobutyric acid (GABA) treatment limited NH4+ accumulation in rice seedlings, reduced NH4+ toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH4+. Furthermore, we found that the activity of glutamine synthetase/NADH‐glutamate synthase (GS; EC 6.3.1.2/NADH‐GOGAT; EC1.4.1.14) in root increased gradually as the NH4+ concentration increased. However, when the concentration of NH4+ is more than 3 mM, GABA treatment inhibited NH4+‐induced increases in GS/NADH‐GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH4+. These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA‐dependent alleviation of ammonium toxicity in rice seedlings.  相似文献   

20.
Research in lateral root (LR) development mainly focuses on the role of auxin. This article reports the effect of cytokinins (kinetin and trans-zeatin) on LR formation in rice (Oryza sativa L.). Our results showed that cytokinin has an inhibitory effect on LR initiation and stimulatory effect on LR elongation. Both KIN and ZEA at a concentration of 1 microM and above completely inhibited lateral root primordium (LRP) formation. The inhibitory effect of cytokinin on LR initiation required a continuous presence of KIN or ZEA in the growth solution. Cytokinin did not show any inhibitory effect on LR emergence from the seminal root once LRPs had been formed. The LRPs that developed in cytokinin-free solution can emerge normally in the solution containing inhibitory concentration (1 microM) of KIN and ZEA. The KIN and ZEA treatment dramatically stimulated LR elongation at all the concentrations tested. Maximum LR elongation was observed at a concentration of 0.01 microM KIN and 0.001 microM ZEA. The epidermal cell length increased significantly in LRs of cytokinin treated seedlings compared to those of untreated control. This result indicates that the stimulation of LR elongation by cytokinin is due to increased cell length. Exogenously applied auxin counteracted the effect of cytokinin on LR initiation and LR elongation, suggesting that cytokinin acts on LR elongation through an auxin dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号