首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RING-finger protein Ro52/TRIM21 is known to be an autoantigen and is recognized by anti-Ro/SSA antibodies, which are commonly found in patients with Sjögren’s syndrome and systemic lupus erythematosus. We recently showed that Ro52 is an E3 ubiquitin ligase and localizes to cytoplasmic bodies that are highly motile along the microtubule network. To expand our knowledge of Ro52, we searched partners co-operating with Ro52. We performed a yeast two-hybrid screening of a human brain cDNA library with Ro52 as bait. This screening identified several genes encoding Ro52-interacting proteins, including the apoptosis-related proteins, Daxx and FLASH. Further yeast two-hybrid assays revealed that Daxx binds to the B30.2 domain of Ro52 and that FLASH binds to coiled-coil domains of Ro52 through its death-effector domain-recruiting domain. These results suggest that Ro52, Daxx, and FLASH form heteromeric protein complexes. Indeed, this was supported by results of immunoprecipitation experiments in which we found that Daxx is co-immunoprecipitated with Ro52 in the presence of overexpressed FLASH. Importantly, our fluorescence microscopy revealed that, although Daxx is predominantly located in the nucleus, overexpression of both Ro52 and FLASH leads to relocation of Daxx into the cytoplasm. Thus, Ro52 seems to co-operate with FLASH to induce cytoplasmic localization of Daxx in cells.  相似文献   

2.
UnpEL (also known as Usp4 or Unph) is an oncogenic protein, because its expression with a strong promoter results in the tumorigenic transformation of NIH3T3 cells injected into nude mice. Although the structure of UnpEL is that of a deubiquitinating enzyme, neither its precise function in mammalian cells nor the mechanism of UnpEL-mediated tumorigenesis is known. Here, we show that UnpEL functions as a deubiquitinating enzyme in human HEK293T cells and its isopeptidase activity deconjugates ubiquitin specifically from a UnpEL-interacting protein Ro52. We further show that UnpEL translocates to the cytoplasmic rod-like structures and colocalizes with Ro52 when Ro52 is overexpressed in HEK293 cells. These results suggest that UnpEL colocalizes with the unubiquitinated form of Ro52 to the cytoplasmic rod-like structures, where it keeps Ro52 unubiquitinated. The continuous deubiquitination of Ro52 might be involved in tumorigenesis.  相似文献   

3.
Autoantigen Ro52 is an E3 ubiquitin ligase   总被引:2,自引:0,他引:2  
Anti-Ro/SSA antibodies are classic autoantibodies commonly found in patients with Sj?gren's syndrome, a chronic autoimmune disease characterized by dryness of the eyes and mouth. The autoantibodies recognize a RING-finger protein, Ro52, whose function is still unknown. Since many RING-finger proteins have been identified as E3 ubiquitin ligases, this study was designed to determine whether Ro52 functions as an E3 ubiquitin ligase. For this purpose, recombinant Ro52 was purified from bacterial lysate and used to investigate its activity of E3 ubiquitin ligase in vitro. Its enzymatic activity was also tested in HEK293T cells using wild-type Ro52 and its RING-finger mutant. Our results indicated that Ro52 ubiquitinates itself in cooperation with E2 ubiquitin-conjugating enzyme UbcH5B, thereby validating that Ro52 is a RING-finger-type E3 ubiquitin ligase. Importantly, this ubiquitin modification is predominantly monoubiquitination, which does not target Ro52 to the proteasome for degradation.  相似文献   

4.
SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52’s role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52low HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H2O2- or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.  相似文献   

5.
The RING-finger protein Ro52/TRIM21 is known as an autoantigen and is recognized by anti-Ro/SSA antibodies, which are commonly found in patients with Sjögren’s syndrome and systemic lupus erythematosus. Recently, Ro52 has been shown to localize to distinct structures called cytoplasmic bodies and function as an E3 ubiquitin ligase. However, the Ro52 cytoplasmic bodies have not been well characterized. In this study, we investigated the Ro52 cytoplasmic bodies using fluorescence microscopy. This analysis revealed that the Ro52 cytoplasmic bodies are diffusely located in the cytoplasm and exist independently of TRIM5α cytoplasmic bodies. Our results further showed that the Ro52 cytoplasmic bodies are not stained with MitoTracker dye and are not colocalized with the proteasome subunit Rpt5, the caveolae component caveolin-1, the endosome markers (EEA1, Rab5, and Rab7), and the lysosome marker LAMP2. These results indicate that the Ro52 cytoplasmic bodies are not mitochondria, proteasome-enriched structures, caveolae, endosomes, or lysosomes. Importantly, the Ro52 cytoplasmic bodies are highly motile and are located along the microtubule network. These results suggest that the Ro52 cytoplasmic bodies are unidentified structures that are transported along the microtubule network.  相似文献   

6.
Anti-Ro/SSA antibodies are antinuclear antibodies most commonly found in patients with Sj?gren's syndrome, a chronic autoimmune disease characterized by dryness of the eyes and mouth. The autoantibodies recognize a RING-finger protein, Ro52/SSA (52 kDa), whose function is still unknown. In this study, the ubiquitination of Ro52 was investigated. We found that Ro52 was strongly conjugated by a single molecule of ubiquitin in cells. Although the biological relevance of this mono-ubiquitination was not defined, the function of Ro52 might be modified by the mono-ubiquitination. We also found that Ro52 was conjugated with poly-ubiquitin chain in cells (poly-ubiquitination), suggesting that Ro52 may be downregulated by the ubiquitin-proteasome pathway in vivo. Interestingly, sera from patients with Sj?gren's syndrome showed heterogeneity in their reactivity to poly-ubiquitinated Ro52, probably because of their differing antigenic determinants. This heterogeneity of the reactivity might be associated with the varying clinical features found in patients with Sj?gren's syndrome.  相似文献   

7.
Patients affected by Sj?gren's syndrome and systemic lupus erythematosus (SLE) carry autoantibodies to an intracellular protein denoted Ro52. Although the serologic presence of Ro52 autoantibodies is used clinically for diagnostic purposes, the function of the protein or why it is targeted as an autoantigen in several rheumatic conditions has not been elucidated. In this study, we show that the expression of Ro52 is significantly increased in PBMC of patients with Sj?gren's syndrome and SLE, and demonstrate that Ro52 is a RING-dependent E3 ligase involved in ubiquitination. Overexpression of Ro52, but not of Ro52 lacking the RING domain, in a mouse B cell line lead to decreased growth in steady state and increased cell death after activation via the CD40 pathway. The role of Ro52 in activation-mediated cell death was further confirmed as a reduction in Ro52 expression restored cell viability. These findings suggest that the increased expression of the Ro52 autoantigen in patients may be directly involved in the reduced cellular proliferation and increased apoptotic cell death observed in Sj?gren's syndrome and SLE, and may thus contribute to the autoantigenic load and induction of autoimmune B and T cell responses observed in rheumatic patients.  相似文献   

8.
Autoantibodies to Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. We previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, we have determined the chromosomal location of the gene by in situ hybridization to the end of the short arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans.  相似文献   

9.
Sera from approximately 30% of patients with systemic lupus erythematosus (SLE) contain high titers of autoantibodies that bind to the 52-kDa Ro/SSA protein. We previously detected polymorphisms in the 52-kDa Ro/SSA gene (SSA1) with restriction enzymes, one of which is strongly associated with the presence of SLE (P < 0.0005) in African Americans. A higher disease frequency and more severe forms of the disease are commonly noted among these female patients. To determine the location and nature of this polymorphism, we obtained two clones that span 8.5 kb of the 52-kDa Ro/SSA locus including its upstream regulatory region. Six exons were identified, and their nucleotide sequences plus adjacent noncoding regions were determined. No differences were found between these exons and the coding region of one of the reported cDNAs. The disease-associated polymorphic site suggested by a restriction enzyme map and confirmed by DNA amplification and nucleotide sequencing was present upstream of exon 1. This polymorphism may be a genetic marker for a disease-related variation in the coding region for the protein or in the upstream regulatory region of this gene. Although this RFLP is present in Japanese, it is not associated with lupus in this race.  相似文献   

10.
Ro52蛋白作为靶抗原,存在于多种自身免疫性疾病,如干燥综合征、系统性红斑狼疮、皮肌炎等患者的血清中。Ro52蛋白是TRIM蛋白家族成员(TRIM21),其分子内含有RING-finger、B-box、卷曲螺旋结构域,分别具有不同的生物学功能。Ro52蛋白在免疫防御中的作用日渐为研究者所关注,如Ro52与IgG分子的作用、Ro52作为一种E3泛素连接酶与其他信号分子的作用等。其自身泛素化和广泛的泛素化作用已经在Ro52与干扰素的作用中得到了体现。迄今,Ro52在自身免疫性疾病中的具体致病机制还不清楚。我们尝试通过介绍Ro52的分子生物学特点及其与相关活性分子的相互作用的最新研究进展,初步探索其可能的致病机制。  相似文献   

11.
Autoantibodies directed against 52 kD and 60 kD Ro/SS-A are frequently found in the sera of patients with lupus erythematosus and Sj?gren's syndrome-related disorders. Their location in the cell is subject to continuous debate in literature. It has been postulated that 52 kD Ro (52 Ro) co-localizes with the 60 kD Ro autoantigen in the nucleus, while others demonstrated that 52 Ro is primarily cytoplasmic. In order to resolve this controversy, 52 Ro protein was tagged with green fluorescence protein, overexpressed in A431 keratynocytes, and its location determined using fluorescence confocal microscopy. The intracellular location of the fusion protein was revealed via GFP autofluorescene and indirect immunofluorescence microscopy, using purified anti-52 Ro antibodies. The cellular locations of native 52 Ro in normal human keratinocytes, and in human A431 keratinocyte and HepG2 hepatocyte cell lines were similarly determined by utilizing 2 human anti-52 Ro antibodies purified from two different non-overlapping fragments of recombinant 52 Ro. In addition, colocalization of 52 Ro with mitochondria, lysosomes and endosomes was evaluated. It was found that both the 52 Ro-GFP fusion protein and the native 52 Ro localize in discrete cytoplasmic punctate structures separately from the mitochondria, lysosomes and endosomes. Furthermore, human autoantibodies that are reactive with denaturation-sensitive epitopes on 52 Ro recognize these cytoplasmic punctate structures, whereas antibodies directed against denaturation-resistant 52 Ro epitopes do not. This explains why the previously used antibody against denaturation-resistant 52 Ro epitopes failed to detect the protein in such punctate structures.  相似文献   

12.
13.
Patients with the systemic autoimmune diseases Sjögrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.  相似文献   

14.
SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production   总被引:4,自引:0,他引:4  
An autoantibody against SS-A/Ro52 (Ro52) is most frequently found in the sera of patients with Sj?gren's syndrome, systemic lupus erythematosus, and congenital heart block from anti-Ro52 Ab-positive mother. However, the physiological function of the autoantigen SS-A/Ro52 has not yet been elucidated. In this study, we describe the role of Ro52 protein in T cell activation. Overexpression of SS-A/Ro52 in Jurkat T cell resulted in enhanced IL-2 production following CD28 stimulation. Furthermore, transfection of anti-Ro52-specific small RNA duplexes partially blocked the expression of native and overexpressed Ro52 in Jurkat T cell, resulting in decreased IL-2 production via CD28 pathway in these cells. Finally, intracellular localization of Ro52 dramatically changed following CD28 stimulation. Our data reveal a novel function of Ro52 in CD28-mediated pathway, which eventually contributes to cytokine production and expression of the T cell biological programs.  相似文献   

15.
Ro52 is a member of the TRIM family of single-protein E3 ligases and is also a target for autoantibody production in systemic lupus erythematosus and Sjögren''s syndrome. We previously demonstrated a novel function of Ro52 in the ubiquitination and proteasomal degradation of IRF3 following TLR3/4 stimulation. We now present evidence that Ro52 has a similar role in regulating the stability and activity of IRF7. Endogenous immunoprecipitation of Ro52-bound proteins revealed that IRF7 associates with Ro52, an effect which increases following TLR7 and TLR9 stimulation, suggesting that Ro52 interacts with IRF7 post-pathogen recognition. Furthermore, we show that Ro52 ubiquitinates IRF7 in a dose-dependent manner, resulting in a decrease in total IRF7 expression and a subsequent decrease in IFN-α production. IRF7 stability was increased in bone marrow-derived macrophages from Ro52-deficient mice stimulated with imiquimod or CpG-B, consistent with a role for Ro52 in the negative regulation of IRF7 signalling. Taken together, these results suggest that Ro52-mediated ubiquitination promotes the degradation of IRF7 following TLR7 and TLR9 stimulation. As Ro52 is known to be IFN-inducible, this system constitutes a negative-feedback loop that acts to protect the host from the prolonged activation of the immune response.  相似文献   

16.
Exposure to ultraviolet radiation exacerbates the skin lesions of autoimmune diseases, and is known to induce cell surface expression of SS-A/Ro antigen on keratinocytes in vitro. Following up on recent reports on ultraviolet-B (UVB)-induced oxidative stress, we examined the role of oxidative stress in the surface expression of SS-A/Ro antigen on human keratinocytes. First, the exclusive induction by UVB irradiation of the 52-kDa protein (Ro52) but not of the 60-kDa protein (Ro60) of SS-A/Ro antigen was demonstrated by means of indirect immunofluorescence. The surface expression of Ro52 induced by UVB irradiation was concentration-dependently inhibited by N-acetyl-L-cysteine, an antioxidant. Furthermore, surface expression of Ro52 was similarly induced by diamide, a chemical oxidant. We next used Hoechst 33342 staining and the TUNEL assay to demonstrate that a low dose (20 mJ/cm(2)) of UVB did not induce apoptosis but induced the surface expression of Ro52. Moreover, zVAD-fmk, a pan-caspase inhibitor, did not inhibit UVB-induced surface expression of Ro52 even at a high dose (200 mJ/cm(2)) of UVB, which was sufficient to induce apoptosis in keratinocytes in the absence of zVAD-fmk. Taken together, we concluded that UVB-induced surface expression of Ro52 on keratinocytes is mediated by oxidative stress through a pathway other than apoptosis.  相似文献   

17.
Autoantigen Ro52alpha was recently identified as an E3 ubiquitin ligase. Its splicing variant Ro52beta, which lacks a leucine zipper, has not been characterized yet. We therefore characterized Ro52beta in contrast to Ro52alpha. Our biochemical assays revealed that both Ro52alpha and Ro52beta function as E3 ubiquitin ligases and self-ubiquitinate in cooperation with UbcH5B in vitro. In addition, both Ro52alpha and Ro52beta are ubiquitinated when overexpressed with ubiquitin in HEK293T cells, suggesting that both function as E3 ligases and self-ubiquitinate in vivo. However, cytological studies revealed that Ro52alpha mainly localizes to the cytoplasmic rod-like structures, whereas Ro52beta diffusely localizes to both the cytoplasm and the nucleus. Since the leucine zipper plays a role in the homodimerization and heterodimerization of Ro52alpha, the dimerization might be required for the localization of Ro52alpha to the rod-like structures. On the basis of these results, Ro52alpha and Ro52beta appear to ubiquitinate their particular substrates at different locations.  相似文献   

18.
The human Y RNAs, small RNAs with an unknown function, are complexed with at least three proteins: the 60,000 M(r) Ro protein (Ro60), the 52,000 M(r) Ro protein (Ro52) and the La protein (La). In this study we examined the intermolecular interactions between the components of these so-called Ro ribonucleoprotein (Ro RNP) complexes. Incubation of 32P-labelled hY1 RNA in HeLa S100 extract allows the reconstitution of Ro RNP complexes, which were analysed by immunoprecipitation with monospecific antisera. By immunodepletion of HeLa S100 extracts for either Ro60, Ro52 or La, followed by supplementation with recombinant Ro60 or La, it was demonstrated that both Ro60 and La bind to hY1 RNA directly without being influenced by one of the other proteins. However, binding of Ro52 to hY1 RNA required the presence of Ro60, which strongly suggests that the association of Ro52 with Ro RNPs is mediated by protein-protein interactions between Ro60 and Ro52.  相似文献   

19.
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 provides a powerful route for enforcing normal progression through the mammalian cell cycle. According to a current model, the ubiquitination of p27 during S-phase progression is mediated by SCF(Skp2) E3 ligase that captures Thr187-phosphorylated p27 by means of the F-box protein Skp2, which in turn couples the bound substrate via Skp1 to a catalytic core complex composed of Cul1 and the Rbx/Roc RING finger protein. Here we identify Skp2 as a component of an Skp1-cullin-F-box complex that is based on a Cul1-Ro52 RING finger B-box coiled-coil motif family protein catalytic core. Ro52-containing complexes display E3 ligase activity and promote the ubiquitination of Thr187-phosphorylated p27 in a RING-dependent manner in vitro. The knockdown of Ro52 expression in human cells with small interfering RNAs causes the accumulation of p27 and the failure of cells to enter S phase. Importantly, these effects are abrogated by the simultaneous removal of p27. Taken together, these data suggest a key role for Ro52 RING finger protein in the regulation of p27 degradation and S-phase progression in mammalian cells and provide evidence for the existence of a Cul1-based catalytic core that utilizes Ro52 RING protein to promote ubiquitination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号