首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP (cAMP) levels have been shown to have a positive influence on chondrogenesis in limb buds and pelvic cartilage. In the present study the level of cAMP was measured during somite chondrogenesis in vitro and found to decrease from 1.38 pmol/micrograms DNA on day 0 to 0.9 pmol/micrograms DNA on day 6. Inclusion of notochord with somites caused a marked reduction, with levels decreasing from 1.41 pmol/micrograms DNA on day 0 to 0.36 pmol/micrograms DNA on day 6. Concurrently, the incorporation of radioactive sulfate into sulfated glycosaminoglycans increased from day 3 to day 6 by 38% in somite and 77% in somite-notochord explants. The aggregation of proteoglycans was analyzed by gel chromatography and found to increase with a corresponding decrease in cAMP levels. The results indicate that a decrease in cAMP levels may be necessary for chondrogenic expression in somites.  相似文献   

2.
Somite chondrogenesis in vitro: 1. Alterations in proteoglycan synthesis   总被引:1,自引:0,他引:1  
During embryonic development, somites undergo chondrogenic differentiation when stimulated by notochord or spinal cord. The present study shows that, when cultured in suitable medium, explanted somites incorporated radioactive sulfate into cartilage-specific proteoglycans and the synthetic rate increased when notochord was included with somites. With increased culture time, explanted somites also synthesized proteoglycan monomers which were larger in size along with a larger proportion that were capable of interacting with exogenous hyaluronic acid. Interaction with notochord also resulted in increased synthesis of chondroitin 4-sulfate. Gel electrophoretic analysis showed that proteoglycans from unstimulated somites did not contain link protein (required for stable aggregate formation), even on day 9, while notochord-induced somites showed link protein as early as day 3, increasing 3-fold by day 9.  相似文献   

3.
The stimulation of somite chondrogenesis by extracellular matrix components was studied by monitering the synthesis of cartilage-specific large proteoglycan aggregates. Chick embryonic sternal proteoglycans were separated into various components: monomers, hyaluronic acid, link protein and glycosaminoglycan side chains. The effects of these components, either individually or in various combinations, on somite chondrogenesis was examined. Proteoglycan monomers, alone or in a mixture with other components, induced chondrogenesis. The other components did not have any stimulating effect of their own. The results of these induction studies were also observed on a Sepharose CL–2B column and correlated using electron microscopy. Stimulation of somites resulted in an increase in the amount of proteoglycan aggregation (material excluded from the column) and was in agreement with the morphological appearance of the matrix in that there was increased accumulation of large proteoglycan granules. A matrix mixture of collagen and proteoglycans showed significant stimulation. When the matrix environment of the somites was altered to be unfavorable to the explants (medium containing hyaluronic acid) there was altered synthesis of cartilage-specific molecules. The results presented in this report strongly suggest that the composition of the extracellular matrix material is critical for somite chondrogenesis.  相似文献   

4.
In vitro chondrogenesis and cell viability   总被引:1,自引:0,他引:1  
Anterior somites cultured with (NSA) or without (SA) notochord, and posterior somites cultured with (NSP) or without notochord (SP) were compared with respect to changes in their DNA content, their potential to synthesize the active sulfate principle phosphoadenosine phosphosulfate (PAPS), and their ability to accumulate 35S-sulfate.Chondrogenesis was observed in the NSA, NSP, and SP explants, but was rarely noted in the SA explants. A decrease in DNA content during the initial 48 hr of culture was common to all explants. After this initial decrease, DNA content increased most in those explants forming cartilage. The synthesis of PAPS by cell-free extracts of each type of somite explant also decreased during the initial period of culture. Only extracts of those explants undergoing chondrogenesis showed increases in PAPS synthesis with continued culture. Each type of somite explant accumulated 35S-sulfate into chondroitin sulfate during the first hours of culture. The non-chondrogenic SA explants accumulated little 35S-sulfate during the period of culture. At varying times after 24 hr the chondrifying explants (NSA, SP, and NSP) initiated an increased rate of accumulation of 35S-sulfate.Cartilage nodules, increases in DNA content, PAPS synthesis and 35S-sulfate accumulation occurred within the same 24 hr period, during the 2nd day in NSP explants, the 3rd day in NSA explants, and between the 3rd and 4th day for SP explants. A hypothesis of in vitro somite chondrogenesis based on differential cell viability is presented.  相似文献   

5.
Recent studies have shown that in the developing chick embryo, at physiological level retinoic acid (RA) causes mirror-image duplication of limb skeletal elements. This has led to the suggestion that RA could be the endogenous morphogen or isgnal substance. In this study, in order to explore the effect of RA on somite chondrogenesis, we have standardized a serum-free chemically defined medium that supports the growth of somite explants in vitro. The results indicate that in somites RA at 10 ng/ml level induces cell proliferation, DNA and sulfated proteoglycan synthesis, and at higher concentrations is toxic. The results further show that RA induced stimulation of somite chondrogenesis is sclerotomal specific and the dermamyotemal portion of the somites does not exihibit a similar response. Retinoic acid also increases heparan sulfate synthesis and aggregation of isolated sclerotomal cells in culture. These results thus suggest that in amplifying chondrogenesis, RA acts at all phases such as cell proliferation (may increase cell viability) and aggregation, increased DNA synthesis and increased synthesis of matrix components. In otherwords, RA seems to initiate a chain of inter-related events.  相似文献   

6.
The present study represents a first step in investigating the possible involvement of cyclic AMP in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. Dibutyryl cyclic AMP (db-cAMP) at 1.0 mM severely impairs “spontaneous” somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition of cartilaginous matrix formation is reflected in a 30–40% reduction in sulfated glycosaminoglycan (GAG) accumulation. 8-Bromo-cyclic AMP also severely inhibits cartilage formation and sulfated GAG accumulation by somite explants. This impairment is limited to cyclic AMP derivatives; dibutyryl cyclic GMP, 5′-AMP, and 2′,3′-AMP have no effect. The inhibitory effect of cyclic AMP derivatives is mimicked by the cyclic AMP-phosphodiesterase inhibitor, theophylline, and potentiated by the addition of both db-cAMP and theophylline. Dibutyryl cyclic AMP and/or theophylline also inhibit the stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord, reducing accumulation to a level similar to that found in somite explants without notochord. The inhibition of chondrogenesis by cyclic AMP in notochord-somite explants appears to result from an inability of somites to respond and not from an effect on the inductive capacity of the notochord, since db-cAMP has no detectable effect on the synthesis of molecules (sulfated GAG and collagen) by the notochord that have been implicated in its inductive activity. Finally, db-cAMP and/or theophylline inhibit the stimulation of somite chondrogenesis normally elicited by purified Type I collagen substrates. Dibutyryl cyclic AMP and theophylline reduce sulfated GAG accumulation by somites cultured on collagen to a level even below that accumulated by somites cultured in the absence of collagen, i.e., on Millipore filters.  相似文献   

7.
A disordered somite pattern could be produced artificially when the segmental lateral plate of chickembryo was replaced by dissociated cells of quail segmental pate.The artificially disordered somitepattern formed at either place was used in our work as a model to analyze the mechanism of thedevelopment and differentiation of somite on chick embryo.Our conclusions include the following:1.Although the formation of somites from the dissociated segmental plate cells does not requirespecial environment,the development and differentiation of the somltes require a special environmentwhich is related to the neural tube and notochord.The effect of this special environmental factor maydecrease gradually with the increase of the distance from neural tube to lateral plate.2.The somites located on paraxial area at different distances to the axis have different fates indevelopment.3.The formation of epithelial vesicles is the property of somite cells and the epithelial vesicle is thestructural basis of somite differentiation.If and factor interferes with the differentiation of thesomite,the epithelial vesicle of the somite will be degenerated within certain period of time.4.During resegmentation of the somite,the number,size and arrangement of sclerotome in situ donot depend on the somite from which they are derived.5.Somite cells do not transdifferentiate into kidney tubule directly from their original epithelialvesicles,but are reorganized from the free cells dispersed from the disrupted somites.6.The establishment of cell commitment may involve several steps.Before commitment isestablished the of cell commitment is labile.7.The differentiation of sclerotome starts with the rupture of epithelial wall of somites and thedirection of its movement depends not only on the notochord but also on their position with respectto the neural tube and notochord.8.The disordered somite pattern doesn't influence the segmentation of dorsal root ganglia in situ,but causes the formation of the ectopic dorsal root ganglia.Key Words:Somite differentiation;Artificial disordered somite pattern;Chimeral somite;Resegmentation of sclerotome;Distribution of dorsal root ganglia  相似文献   

8.
The influence of the axial structures on somite formation was investigated by culturing, on a nutritive agar substrate, segmental plates from chick embryos having 8 to 20 pairs of somites. In the first set of experiments, segmental plate was explanted together with adjacent notochord and approximately the lateral halves of the neural tube and node region. These explants formed 18 to 20 somites within 30 hr. In a second series of experiments, the notochord and neural tube were included as before, but further regression movements in the explants were prevented by removing the node region. These explants formed only 11.9 ± 1.1 somites. Finally, explants of segmental plate that included no neural tube, notochord, or node region were made. These explants had formed 10.7 ± 1.1 somites 14 to 17 hr later. When such explants were cultured for periods longer than 17 hr, there was a marked tendency for the more posterior somites to disperse and for all of the somites to develop a peculiar “hollow” morphology. It was concluded from these results that during the period of development when chick embryos possess 8 to 20 pairs of somites, the segmental plate mesoderm (1) represents about 12 prospective somites, (2) may segment into its full complement of somites without further contact with the axial structures, but (3) requires continued intimate contact with the axial structures for normal somite morphologic differentiation and stability.  相似文献   

9.
Summary The distribution of sclerotome and neural crest cells of avian embryos was studied by light and electron microscopy. Sclerotome cells radiated from the somites towards the notochord, to occupy the perichordal space. Neural crest cells, at least initially, also entered cell-free spaces. At the cranial somitic levels they moved chiefly dorsal to the somites, favouring the rostral part of each somite. These cells did not approach the perichordal space. More caudally (i.e. trunk levels), neural crest cells initially moved ventrally between the somites and neural tube. Adjacent to the caudal half of each somite, these cells penetrated no further than the myosclerotomal border, but opposite the rostral somite half, they were found next to the sclerotome almost as far ventrally as the notochord. However, they did not appear to enter the perichordal space, in contrast to sclerotome cells.When tested in vitro, sclerotome cells migrated towards notochords co-cultured on fibronectin-rich extracellular material, and on collagen gels. In contrast, neural crest cells avoided co-cultured notochords. This avoidance was abolished by inclusion of testicular hyaluronidase and chondroitinase ABC in the culture medium, but not by hyaluronidase from Streptomyces hyalurolyticus. The results suggest that sclerotome and neural crest mesenchyme cells have a different distribution with respect to the notochord, and that differential responses to notochordal extracellular material, possibly chondroitin sulphate proteoglycan, may be responsible for this.  相似文献   

10.
The tissue interaction between the notochord and the somites of the vertebrate embryo establishes the proper shape and constitution of the vertebral cartilage. Soon after somite formation, the somite differentiates into a cartilage-forming part, the sclerotome, and a muscle and skin-forming part, the dermamyotome. These components of the somite were dissected from 312-day-old chick embryos (stage 1812–19 and cultured in vitro in the presence or absence of notochord. It was found that the sclerotome cells respond to the notochord by an increased incidence of hyaline cartilage nodules, greater accumulation of sulfated glycosaminoglycans, synthesis of larger aggregates of proteoglycans, increased DNA accumulation, and accelerated DNA synthesis. The dermamyotome did not show these changes. These results indicate that the notochord enhances cartilage differentiation in the sclerotome. Under these conditions, the notochord did not elicit cartilage formation in the dermamyotome.  相似文献   

11.
Infection of embryonic chicken notochord-somite explants with Rous sarcoma virus inhibited the in vitro differentiation of somites into cartilage. Visual inspection of the explants revealed that viral infection reduced the size of cartilage nodule formation. Formation of the complex of sulfated proteoglycans with hyaluronic acid was inhibited by RSV infection, and sedimentation analysis of the sulfated proteoglycans showed that very little fast sedimenting proteoglycans were synthesized by RSV-infected explants. The infected explants primarily synthesize a slowly sedimenting sulfated proteoglycan which was chondroitinase resistant. These slow-sedimenting sulfated proteoglycans lack the ability to associate with hyaluronic acid and appear to be noncartilaginous. These effects of RSV are apparently due to the src gene of this virus since the mutant td108, which lacks part of the src gene, has no detectable influence on the chondrogenic differentiation of somite explants. Similarly, infection with RAV-2 as well as with uv-irradiated virus had no detectable effect. The inhibition of synthesis of fast sedimenting proteoglycans was observed at 41 degrees C with explants infected with tsNY68, suggesting that residual activity of transforming gene of this virus at the non-permissive temperature is sufficient for this inhibition in the explants.  相似文献   

12.
The present study represents a first step in investigating the possible involvement of calcium (Ca2+) in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. The ionophore, A23187, a drug that facilitates Ca2+ uptake leading to elevation of cytoplasmic Ca2+ levels, at concentrations of 0.25-1.0 microgram/ml severely impairs "spontaneous" somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition is reflected in a considerable reduction in sulfated glycosaminoglycan (GAG) accumulation by A23187-treated somite explants. Furthermore, A23187 inhibits the striking stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord and collagen substrates. In fact, 1.0 microgram/ml of A23187 reduces sulfated GAG accumulation by somites cultured in association with notochord or on collagen to a level even below that accumulated by somites cultured in the absence of these inductive agents. Although these results must be interpreted with caution, they provide incentive for considering a possible regulatory role for Ca2+ in the chondrogenic response of somites to extracellular matrix components produced by the embryonic notochord.  相似文献   

13.
The effect of mechanical extension on the differentiation of axial mesoderm in double explants (sandwiches) of Xenopus laevis embryonic tissues isolated during the early gastrula–late neurula developmen-tal period is studied. In explants at the early gastrula stage, artificial extension orients and stimulates isolated differentiation of the notochord and somites as well as their joint formation. Moreover, extension facilitated the formation of the normal anatomical structure of the notochord and affected expression of Chordin gene. At the late gastrula stage, the effect of artificial extension on joint somite–notochord differentiation was weaker. At the stage of late neurula, somites were sometimes formed in explants lacking a notochord anlage. Thus, at earlier stages, the formation of somites was stimulated by contacts with the notochord and joint development of both structures was mechanical dependent, while at the later stages, somites developed inde-pendently of the notochord. Thus, the role of tissue extension is primarily the establishment of normal mor-phology and expression of Chordin was located in the direction of extension.  相似文献   

14.
15.
The axial structures, the notochord and the neural tube, play an essential role in the dorsoventral patterning of somites and in the differentiation of their many cell lineages. Here, we investigated the role of the axial structures in the mediolateral patterning of the somite by using a newly identified murine homeobox gene, Nkx-3.1, as a medial somitic marker in explant in vitro assays. Nkx-3.1 is dynamically expressed during somitogenesis only in the youngest, most newly-formed somites at the caudal end of the embryo. We found that the expression of Nkx-3.1 in pre-somitic tissue explants is induced by the notochord and maintained in newly-differentiated somites by the notochord and both ventral and dorsal parts of the neural tube. We showed that Sonic hedgehog (Shh) is one of the signaling molecules that can reproduce the effect of the axial structures by exposing explants to either COS cells transfected with a Shh expression construct or to recombinant SHH. Shh could induce and maintain Nkx-3.1 expression in pre-somitic mesoderm and young somites but not in more mature, differentiated ones. The effects of Shh on Nkx-3.1 expression were antagonized by a forskolin-induced increase in the activity of cyclic AMP-dependent protein kinase A. Additionally, we confirmed that the expression of the earliest expressed murine myogenic marker, myf 5, is also regulated by the axial strucutres but that Shh by itself is not capable of inducing or maintaining it. We suggest that the establishment of somitic medial and lateral compartments and the early events in myogenesis are governed by a combination of positive and inhibitory signals derived from the neighboring structures, as has previously been proposed for the dorsoventral patterning of somites.  相似文献   

16.
The regulatory role of cyclic AMP in various cellular activities is well known. It has been documented that both the notochord and extracellular matrix materials (ECM) induce somite chrondrogenesis. We believe that the ECM modulates the intracellular cAMP level during chondrogenic differentiation. The studies indicated that notochordal induction, which resulted in somite chondrogenesis (reflected by increased sulfated glycosaminoglycan synthesis) reduced the intracellular cAMP level in somites. Addition of forskolin and dibutyryl cAMP resulted in increased intracellular cAMP levels and decreased synthesis of sulfated glycosaminoglycans (decreased chondrogenesis). In the case of dibutyryl cAMP, the inhibition of sulfated glycosaminoglycan synthesis was related to the length of exposure time. Thus, the inverse relationship between cAMP content and enhanced chondrogenesis supports the theory that, in somites, a decrease in the intracellular cAMP level may be necessary to trigger chondrogenic differentiation.  相似文献   

17.
Experimental analysis of the mechanisms of somite morphogenesis   总被引:1,自引:0,他引:1  
Earlier studies have suggested influences on somite morphogenesis by “somite-forming centers,” primitive streak regression, Hensen's node and notochord, and neural plate. Contradictions among these studies were unresolved.Our experiments resolve these conflicts and reveal roles of the primitive streak and notochord in shearing the prospective somite mesoderm into right and left halves and releasing somite-forming capabilities already present. The neural plate appears to be the principal inductor of somites.Embryo fragments containing no somite-forming centers, node, notochord, or streak nevertheless formed somites within 10 hr. Such somites disperse within the next 14–24 hr, which may explain why others failed to see them. In these fragments, an incision alongside the streak substitutes for streak regression in releasing somite formation. All such somites form simultaneously rather than in the normal anteroposterior progression. These fragments contain neural plate, but not notochord. We believe that physical attachment of somites to notochord in normal embryos stabilizes them and prevents dispersal.Pieces of epiblast were rotated 180° putting neural plate over lateral plate mesoderm regions. Somites were induced from the lateral plate by the displaced neural plate region. This is additional evidence of the powerful ability of neuroepithelium to induce somites.  相似文献   

18.
The role of somites and notochords in neuroectoderm differentiation from the embryonic ectoderm and its subsequent patterning into regional compartments along rostro-caudal and dorso-ventral axes, especially in humans, remains elusive. Here, we demonstrate the co-culture effect of somites and notochords isolated from chicken embryos on the neuronal differentiation and regional identity of an adherent culture of human embryonic stem cells (hESCs). Notochord increased the efficiency and speed of neuronal induction, whereas somites had a weak neuronal inducing effect on hESCs. However, a synergistic effect was not observed when notochords and somites were used together. Moreover, in somite and notochord co-culture groups, hESCs-derived neuronal cells expressed HOXB4, OTX2, IRX3 and PAX6, indicative of dorsal hindbrain and ventral anterior identities, respectively. Our results reveal the influence of embryonic notochord and somite co-culture in providing neuronal induction as well as rostro-caudal and dorso-ventral regional identity of hESCs-derived neuronal cells. This study provides a model through which in vivo neuronal induction events may be imitated.  相似文献   

19.
In the present investigation, evidence is presented directly implicating proteoglycans produced by the embryonic notochord in the control of somite chondrogenesis. It has been demonstrated by several histochemical techniques that during the period of its interaction with somites, the notochord synthesizes perinotochordal proteoglycans, and these proteoglycans have been shown to contain chondroitin 4-sulfate (40%), chondroitin 6-sulfate (40%), and heparan sulfate (20%). Dissection of notochords from embryos with the aid of a brief treatment with trypsin results in the removal of perinotochordal extracellular matrix materials including proteoglycans, while dissection of notochords without the aid of enzyme treatment or with a low concentration of collagenase results in their retention. There is a considerable increase in the rate and amount of cartilage formation and a corresponding 2 to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated by somites cultured in association with notochords dissected under conditions in which perinotochordal materials are retained. Treatment of collagenase-dissected or freely dissected notochords with highly purified enzymes (chondroitinase ABC, AC, and testicular hyaluronidase) which specifically degrade proteoglycans causes a loss of histochemically detectable perinotochordal proteoglycans. These notochords are considerably impaired in their ability to support in vitro somite chondrogenesis. In addition, when trypsin-treated notochords are cultured (“precultured”) for 24 hr on nutrient agar (in the absence of somites), perinotochordal material reaccumulates. Somites cultured in association with such “precultured” notochords exhibit considerable increase in the amount of cartilage formed and a 2- to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated as compared to somites cultured in association with trypsin-treated notochords which have not been “precultured.” This observation indicates that trypsin-treated notochords reacquire their ability to maximally stimulate in vitro somite chondrogenesis by resynthesizing and accumulating perinotochordal material. Finally, “precultured” notochords treated with chondroitinase to remove perinotochordal proteoglycans are considerably impaired in their ability to support in vitro somite chondrogenesis. These observations are consonant with the concept that proteoglycans produced by the embryonic notochord play an important role in somite chondrogenesis.  相似文献   

20.
Sonic hedgehog (Shh), produced by the notochord and floor plate, is proposed to function as an inductive and trophic signal that controls somite and neural tube patterning and differentiation. To investigate Shh functions during somite myogenesis in the mouse embryo, we have analyzed the expression of the myogenic determination genes, Myf5 and MyoD, and other regulatory genes in somites of Shh null embryos and in explants of presomitic mesoderm from wild-type and Myf5 null embryos. Our findings establish that Shh has an essential inductive function in the early activation of the myogenic determination genes, Myf5 and MyoD, in the epaxial somite cells that give rise to the progenitors of the deep back muscles. Shh is not required for the activation of Myf5 and MyoD at any of the other sites of myogenesis in the mouse embryo, including the hypaxial dermomyotomal cells that give rise to the abdominal and body wall muscles, or the myogenic progenitor cells that form the limb and head muscles. Shh also functions in somites to establish and maintain the medio-lateral boundaries of epaxial and hypaxial gene expression. Myf5, and not MyoD, is the target of Shh signaling in the epaxial dermomyotome, as MyoD activation by recombinant Shh protein in presomitic mesoderm explants is defective in Myf5 null embryos. In further support of the inductive function of Shh in epaxial myogenesis, we show that Shh is not essential for the survival or the proliferation of epaxial myogenic progenitors. However, Shh is required specifically for the survival of sclerotomal cells in the ventral somite as well as for the survival of ventral and dorsal neural tube cells. We conclude, therefore, that Shh has multiple functions in the somite, including inductive functions in the activation of Myf5, leading to the determination of epaxial dermomyotomal cells to myogenesis, as well as trophic functions in the maintenance of cell survival in the sclerotome and adjacent neural tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号