首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation.  相似文献   

2.
B Meyhack  N R Pace 《Biochemistry》1978,17(26):5804-5810
A precursor of 5S ribosomal RNA from Bacillus subtilis (p5A rRNA, 179 nucleotides in length) is cleaved by RNase M5, a specific maturation endonuclease which releases the mature 5S rRNA (m5, 116 nucleotides) and precursor fragments derived from the 5' (21 nucleotides) and 3' (42 nucleotides) termini of p5A rRNA. Previous results (Meyhack, B., et al. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3045) led to the conclusion that recognition elements in potential RNase M5 substrates mainly reside in the mature moiety of the precursor. Limited digestion of p5A rRNA with RNase T1 permitted the isolation of a number of test substrates which contained both precursor-specific segments and were unaltered in the immediate vicinity of the cleavage sites, but which differed in that more or less extensive regions of the mature moiety of the p5A rRNA were deleted. Tests of the capacity of these partial molecules to serve as substrates for RNase M5 indicate clearly that the enzyme recognizes the overall conformation of potential substrates, neglecting only the double-helical "prokaryotic loop" (Fox, G.E., & Woese, C.R. (1975) Nature (London) 256, 505).  相似文献   

3.
B Meyhack  B Pace  N R Pace 《Biochemistry》1977,16(23):5009-5015
In vitro maturation of precursor 5S ribosomal RNA (p5A) from Bacillus subtilis effected by RNase M5 yields mature 5S RNA (m5, 116 nucleotides), and 3' precursor-specific segment (42 nucleotides), and a 5' precursor-specific segment (21 nucleotides) (Sogin, M.L., Pace, B., and Pace, N.R. (1977), J. Biol. Chem. 252, 1350). Limited digestion of p5A with RNase T2 introduces a single scission at position 60 of the molecule; m5 is cleaved at the corresponding nucleotide residue. The complementary "halves" of the molecules could be isolated from denaturing polyacrylamide gels. The isolated fragments of p5A are not substrates for RNase M5, suggesting that some recognition elements can be utilized by RNase M5 only when presented in double-helical form. In exploring the involvement of the precursor-specific segments in the RNase M5-p5A interaction, substrate molecules lacking the 3' or 5' precursor-specific segment were constructed by reannealing complementary "halves" from p5A and m5 RNA. The artificial substrate lacking the 5'-terminal precursor segment was cleaved very much more slowly than the lacking t' segment; the 5' precursor-specific segment therefore contains one or more components recognized by RNase M5 during its interaction with the p5A substrate.  相似文献   

4.
5.
A precursor of 5S ribosomal ribonucleic acid (rRNA) from Bacillus subtilis was cleaved by ribonuclease (RNase) M5 in cell-free extracts from B. subtilis to yield the mature 5S rRNA plus RNA fragments derived from both termini of the precursor. The released, mature 5S rRNA was stable in these extracts; however, as occurred in vivo, the precursor-specific fragments were rapidly and completely destroyed. Such destruction was not observed in the presence of partially purified RNase M5, so fragment scavenging was not effected by the maturation nuclease itself. The selective destruction of the precursor-specific fragments was shown to occur through a 3'-exonucleolytic process with the release of nucleoside 5'-monophosphates; the responsible activity therefore had the character of RNAse II. Consideration of the primary and probable secondary structures of the precursor-specific fragments and mature 5S rRNA suggested that involvement of 3' termini in tight secondary structure may confer protection against the scavenging activity.  相似文献   

6.
7.
The secondary structure of 16 S and 23 s rRNA sequences in 30 S preribosomal RNA of Escherichia coli was analyzed by electron microscopy after partial denaturation and compared to mature 16 S and 23 S rRNA examined under the same conditions. The sequences in the pre-rRNA notably lack the specific loops that dominate the 5'-terminal regions of mature 16 S and 23 S rRNA. In other respects, the sizes and locations of loops in the 23 S rRNA sequence are qualitatively very similar in mature and pre-rRNA. Eleven of 12 loops outside of the 5'-terminal domain correspond, with the most frequent features in the 3'-half of the molecule. In contrast, the sizes and locations of loops in the 16 S rRNA sequence differ between precursor and mature forms. In the pre-rRNA, instead of the 370-nucleotide 5'-terminal loop of mature rRNA, some 1000-nucleotide terminal loops are observed. The pre-rRNA also shows a frequent 610-nucleotide central loop and a large 1240-nucleotide loop not seen in the mature rRNA. Also, in the 3'-region of the sequence, the largest loops in pre-rRNA are 120 nucleotides shorter than in mature rRNA. We suggest that the structure of pre-rRNA may promote some alternate conformational features, and that these could be important during ribosome formation or function.  相似文献   

8.
Recognition signals for mouse pre-rRNA processing   总被引:17,自引:0,他引:17  
In order to identify signals for rRNA processing in eukaryotes, mouse pre-rRNA sequence features around four cleavage sites have been analyzed. No consensus sequence can be recognized when the four boundary regions are examined. Unlike mature rRNA termini, distal sequences of precursor-specific domains cannot participate in stable duplex with adjacent regions. The extensive divergence of precursor-specific sequences during evolution also applies to nucleotides adjacent to cleavage sites, with a significant exception for a conserved segment immediately downstream 5.8S rRNA. A specific role is proposed for U3 nucleolar RNA in the conversion of 32S pre-rRNA into mature 28S rRNA, through base-pairing with precursor-specific sequences at the boundaries of excised domains.  相似文献   

9.
The maturation of 5S ribosomal ribonucleic acid (rRNA) in the obligately photoautotrophic unicellular blue-green alga Anacystis nidulans has been studied by using polyacrylamide gel electrophoresis and T1 ribonuclease oligonucleotide analysis. A. nidulans mature 5S rRNA (m5) is of approximately the same molecular weight as the 5S rRNA of Escherichia coli, and is derived by cleavage of a precursor (p5) containing a few (three to six) additional nucleotides. Some of these additional nucleotides occur at the 5' end of the precursor molecule; others may occur at the 3' end. Kinetic experiments indicate that precursors of mature 5S rRNA larger than p5 either do not exist or are very transient in A. nidulans. These results are discussed in relation to those obtained with other prokaryotes.  相似文献   

10.
G Garriga  H Bertrand  A M Lambowitz 《Cell》1984,36(3):623-634
We have identified nuclear mutants of Neurospora that are defective in splicing the mitochondrial large rRNA and that accumulate unspliced pre-rRNA (35S RNA). In cyt-4 mutants, the unspliced pre-rRNA contains short 3' end extensions (110 nucleotides) that are not present in pre-rRNAs from the other mutants. This and other characteristics suggest that the cyt-4 mutants may be primarily defective in 3' end synthesis and the RNA splicing defect occurs secondarily as a result of impaired RNA folding. The cyt-4 mutants also accumulate a "short" intron RNA and small exon RNAs that may reflect aberrant RNA cleavages. The 5' end of the short intron is about 285 nucleotides downstream from the 5' splice site at or near the base of the "central hairpin", a putative intermediate in folding of the pre-rRNA. Furthermore, the aberrant cleavage sites are immediately after a six nucleotide sequence (GAUAAU) homologous to the final splice junction (GAU/AAC).  相似文献   

11.
The spliceosomal small nuclear RNAs U1, U2, U4, and U5 are transcribed by RNA polymerase II as precursors with extensions at their 3' ends. The 3' processing of these pre-snRNAs is not understood in detail. Two pathways of pre-U2 RNA 3' processing in vitro were revealed in the present investigation by using a series of human wild-type and mutant pre-U2 RNAs. Substrates with wild-type 3' ends were initially shortened by three or four nucleotides (which is the first step in vivo), and the correct mature 3' end was then rapidly generated. In contrast, certain mutant pre-U2 RNAs displayed an aberrant 3' processing pathway typified by the persistence of intermediates representing cleavage at each internucleoside bond in the precursor 3' extension. Comparison of the wild-type and mutant pre-U2 RNAs revealed a potential base-pairing interaction between nucleotides in the precursor 3' extension and a sequence located between the Sm domain and stem-loop III of U2 RNA. Substrate processing competition experiments using a highly purified pre-U2 RNA 3' processing activity suggested that only RNAs capable of this base-pairing interaction had high affinity for the pre-U2 RNA 3' processing enzyme. The importance of this postulated base-pairing interaction between the precursor 3' extension and the internal region between the Sm domain and stem-loop III was confirmed by the results obtained with a compensatory substitution that restores the base pairing, which displayed the normal 3' processing reaction. These results implicate a precursor-specific base-paired structure involving sequences on both sides of the mature cleavage site in the 3' processing of human U2 RNA.  相似文献   

12.
Processing pathway of Escherichia coli 16S precursor rRNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号