首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to characterize T cell epitopes in the Plasmodium falciparum circumsporozoite (CS) protein sequence, we isolated T cell clones, from non-immune donors, which reacted with synthetic peptides corresponding to two predicted CS protein T cell epitopes. Peptide CS.T3 (corresponding to a non-polymorphic region of the CS protein, residues 378-398) was recognized in association with either DR2 or DRw9 restriction elements. T cell clones recognizing CS.T3 also reacted with the sporozoite-derived CS protein. Peptide CS.T2 corresponds to a polymorphic region (residues 325-341) of the CS protein. Unlike the CS.T3-specific clones, the CS.T2-specific clones did not recognize the CS protein. Since the CS.T2 peptide includes residues which are polymorphic in different P. falciparum isolates, we investigated whether these residues were critical for recognition of the peptide. We show here that a single amino acid substitution at a position of the CS protein which shows genetic polymorphism affects recognition of the sequence by human T cells. The implications of these data for malaria vaccine development are discussed.  相似文献   

2.
The murine cellular immune response to the circumsporozoite (CS) protein of Plasmodium vivax was characterized using five synthetic peptides, some of which we identified as corresponding to T cell epitopes. The peptides P308-320, P344-355 and P353-364 were immunogenic, inducing a genetically restricted proliferative response, due to the activation of CD4+ T cells. The peptide P308-320 was recognized only by the lymphocytes of B10 (H-2b) mice. The other two peptides were recognized by primed lymphocytes of H-2a and H-2k mice. Of interest was the finding that one of these peptides, P353-364, induced a proliferative response of a large percentage of immune outbred Swiss mice. Our data provide evidence that, at least in mice, there is recognition of multiple T cell epitopes within the major surface antigen of P. vivax sporozoites.  相似文献   

3.
In the present study we analyzed the fine specificity of mouse monoclonal and human polyclonal antibodies directed against the repeat domain of the circumsporozoite (CS) protein of the human malaria parasite, Plasmodium vivax. Five synthetic peptides, representing monomeric and dimeric repeats of this malarial antigen, were assayed for their capacity to inhibit the binding of these antibodies to a yeast-derived recombinant CS protein. The results revealed the existence of at least two distinct repeated overlapping epitopes in the CS protein of P. vivax. Furthermore, polyclonal sera contain antibodies which recognize additional determinants not represented by the synthetic repeat peptides. Some of these sera contain antibodies recognizing a region flanking the repeat domain (region I). The present findings are in contrast with the antibody response in rodents and humans to the Plasmodium falciparum CS protein, which is directed against a single repeated immunodominant epitope.  相似文献   

4.
PBL from individuals with no history of malaria exposure, as well as cord blood lymphocytes, were tested for proliferation to T cell epitopes from the malaria circumsporozoite proteins of Plasmodium falciparum and Plasmodium vivax. Cells from many individuals proliferated in response to these peptides, but for two peptides (P. vivax317-336 and P. falciparum CS331-350) the response rate ranged from 64 to 93%, with the specific stimulation indices reaching as high as 38. The phenotype of the cells responding to PfCS331-350 was predominantly CD4+,CD8-,CD45Ra+,CD45Ro-, which was the inverse of the phenotype of the cells responding to tetanus toxoid with respect to CD45 isoforms. T cell clones from different individuals specific for PfCS331-350 were restricted by at least four different HLA-DR molecules and there was no evidence that the peptide was a "superantigen." Overlapping peptides were used to demonstrate that clones had different fine specificities although the peptide specificities of the DR4-restricted and DR11-restricted clones were similar. Although the individuals tested here have had no history of malaria exposure, these data demonstrate that they have T cells specific for malaria sequences present in high frequency that proliferate as intensely as some memory responses. Although one clone from an individual with a history of BCG vaccination did react strongly with PPD, the phenotype of these cells suggests that they are not classical memory cells for a cross-reactive recall Ag. Such cells may affect the induction or expression of malaria immunity.  相似文献   

5.
Recent work directed toward the development of a malarial vaccine has focused on the identification and production of the immunodominant repeating peptide of the circumsporozoite protein of the human malaria parasites as an antigen. An important factor which relates to the usefulness of this antigen in a vaccine is the rate at which the molecule changes in sequence. We have determined the sequence and arrangement of the repeating epitope of the circumsporozoite protein gene from a Plasmodium vivax isolate from La Paz, El Salvador (Sal-I). This is compared with a portion of the previously published sequence of the circumsporozoite protein gene from a P. vivax isolate from Belém, Brazil. The genes appear to be very similar in the repeat region. There are 20 similar repeating units in the El Salvador strain and only 19 units are conserved in the Brazilian strain. Following this there are degenerate repeats in both strains. Even the pattern of silent mutations in the repeat area are similar; however, they are not necessarily in the identical location and appear to have shifted. The data suggest that the repeat region of these genes may be evolving by an accelerated mechanism(s). Such a phenomenon could severely decrease the long-term efficacy of a repeat-based anti-sporozoite vaccine.  相似文献   

6.
The cellular immune response to the circumsporozoite (CS) protein of Plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequence of the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen-specific in vitro proliferative response to the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative response when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, within the major surface antigen of P. vivax sporozoites, of epitopes capable to induce proliferation of human PBMC.  相似文献   

7.
Plasmodium berghei: cloning of the circumsporozoite protein gene   总被引:6,自引:0,他引:6  
A DNA fragment encoding the carboxy terminal 80% of the Plasmodium berghei circumsporozoite protein was selected from a genomic DNA expression library. Sequencing revealed that the P. berghei circumsporozoite protein was similar in overall structure to circumsporozoite proteins from other malaria species, although the central repeat region was unique in comprising two different blocks of tandem peptide repeats: 11 eight amino acid repeats with predominant sequence DPAPPNAN were followed by 16 two amino repeats, predominantly PQ. The P. berghei circumsporozoite protein exhibited limited, but about equal amino acid homology to circumsporozoite proteins from P. knowlesi, P. vivax, and P. falciparum, indicating that P. berghei is not closely related to any of these other malaria species. Cloning of the P. berghei circumsporozoite protein gene will allow direct testing of sporozoite vaccines in mice.  相似文献   

8.
A. L. Hughes 《Genetics》1991,127(2):345-353
The circumsporozoite (CS) protein is a cell surface protein of the sporozoite, the stage of the life cycle of malaria parasites (Plasmodium spp.) that infects the vertebrate host. Analysis of DNA sequences supports the hypothesis that in Plasmodium falciparum, positive Darwinian selection favors diversity in the T-cell epitopes (peptides presented to T cells by host MHC molecules) of the CS protein. In gene regions encoding T cell epitopes of P. falciparum, the rate of nonsynonymous nucleotide substitution is significantly higher than that of synonymous substitution, whereas this is not true of other gene regions. Furthermore nonsynonymous nucleotide substitutions in these regions cause a change of amino acid residue charge significantly more frequently than expected by chance. By contrast, in Plasmodium cynomolgi, the same regions show no evidence of positive selection, and residue charge is conserved. The CS protein has a central repeat region, which is the target of host antibodies. In P. falciparum, the amino acid sequence of the repeat region is conserved within and between alleles. In P. cynomolgi, on the other hand, there is evidence that positive selection has favored evolution of two different repeat types within a given allele.  相似文献   

9.
The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced with the avian Plasmodium gallinaceum CS (PgCS) sequence, develop normally in the A. stephensi mosquito midgut but the sporozoites are not infectious. We therefore generated P. berghei transgenic parasites carrying the PgCS gene, in which the repeat region was replaced with the homologous region of P. berghei CS (PbCS). A further line, in which both the N-terminal region and repeat region were replaced with the homologous regions of PbCS, was also generated. Introduction of the PbCS repeat region alone, into the PgCS gene, did not rescue sporozoite species-specific infectivity. However, the introduction of both the PbCS repeat region and the N-terminal region into the PgCS gene completely rescued infectivity, in both the mosquito vector and the mammalian host. Immunofluorescence experiments and western blot analysis revealed correct localization and proteolytic processing of CSP in the chimeric parasites. The results demonstrate, in vivo, that the repeat region of P. berghei CSP, alone, is unable to mediate sporozoite infectivity in either the mosquito or the mammalian host, but suggest an important role for the N-terminal region in sporozoite host cell invasion.  相似文献   

10.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

11.
Preclinical evaluation of synthetic peptides corresponding to the C-terminal regions of the circumsporozoite (CS) protein in various Plasmodia showed that these preparations were immunogenic and safe upon injection in various animal models. Additionally, the corresponding peptide from Plasmodium falciparum was widely recognized by sera and PBL obtained from semi-immune adults living in malaria endemic areas. Moreover, the CS C-terminal peptide derived from P. berghei conferred protection upon challenge with live sporozoites in mice. A GLP preparation of the synthetic peptide corresponding to residues 282-383 of the Pf CS, NF-54 strain is currently evaluated in a open, non-randomized, Phase I human trial. Data obtained after the second antigen injection show that the malaria vaccine Pf CS 282-383 is safe, well tolerated and gives rise to high antibody titre, CD4+ and CD8+ lymphocyte responses.  相似文献   

12.
The aim of this study was to determine the prevalence of malaria infection and antibodies against the repetitive epitopes of the circumsporozoite (CS) proteins of Plasmodium falciparum, P. malariae, P. vivax VK210, P. vivax VK247, and P. vivax-like in individuals living in the states of Rond?nia, Pará, Mato Grosso, Amazonas, and Acre. Active malaria transmission was occurring in all studied sites, except in Acre. P. falciparum was the predominant species in Pará and Rond?nia and P. vivax in Mato Grosso. Infection by P. malariae was low but this Plasmodium species was detected in Rond?nia (3.5%), Mato Grosso (2.5%), and Pará (0.8%). High prevalence and levels of serological reactivity against the CS repeat peptides of P. falciparum were detected in Rond?nia (93%) and Pará (85%). Sera containing antibodies against the CS repeat of P. malariae occurred more frequently in Rond?nia (79%), Pará (76%), and Amazonas (68%). Antibodies against the repeat epitope of the standard CS protein of P. vivax VK210, P. vivax VK247, and P. vivax-like were more frequent in Rond?nia, Pará, and Mato Grosso. The high frequency of reactions to P. malariae in most of the areas suggests that the infection by this Plasmodium species has been underestimated in Brazil.  相似文献   

13.
Native Plasmodium circumsporozoite (CS) protein, translocated by sporozoites into the cytosol of host cells, as well as recombinant CS constructs introduced into the cytoplasm by liposome fusion or transient transfection, all lead to inhibition of protein synthesis in mammalian cells. The following findings suggest that this inhibition of translation is caused by a binding of the CS protein to ribosomes. (i) The distribution of native CS protein translocated by sporozoites into the cytoplasm as well as microinjected recombinant CS protein suggests association with ribosomes. (ii) Recombinant CS protein binds to RNase-sensitive sites on rough microsomes. (iii) Synthetic peptides representing the conserved regions I and II-plus of the P.falciparum CS protein displace recombinant CS protein from rough microsomes with dissociation constants in the nanomolar range. (iv) Synthetic peptides representing region I from the P.falciparum CS protein and region II-plus from the P.falciparum, P.berghei or P.vivax CS protein inhibit in vitro translation. We propose that Plasmodium manipulates hepatocyte protein synthesis to meet the requirements of a rapidly developing schizont. Since macrophages appear to be particularly sensitive to the presence of CS protein in the cytosol, inhibition of translation may represent a novel immune evasion mechanism of Plasmodium.  相似文献   

14.
We have investigated Th cell recognition of the HIV core protein p24 by using CD4+ T cell clones derived from cynomolgus macaques immunized with hybrid HIV p24: Ty virus-like particles (VLP). T cell lines from two immunized animals responded to p24: Ty-VLP, control Ty-VLP, purified p24, and whole inactivated HIV, indicating the presence of T cells specific for p24 as well as the Ty carrier protein. The HIV determinants recognized by the T cell lines were identified by using a series of overlapping peptides synthesized according to the sequence of p24. Both T cell lines recognized peptide 11 (amino acids 235-249) and peptide 14 (amino acids 265-279). In addition, one T cell line also responded to peptide 9 (amino acids 215-229). Definitive identification of two T cell epitopes on p24 was confirmed at the clonal level: from a total of four T cell clones generated from one of the T cell lines, two respond specifically to peptide 11 and two to peptide 14. The T cell clones were CD4+ and MHC class II-restricted and secreted IL-2 in response to stimulation with purified p24, inactivated HIV or a single synthetic peptide. The specificity of the Th clones for variant peptides demonstrated cross-reactivity with two simian immunodeficiency virus isolates, but only limited responses to HIV-2 sequences. However, the Th cell epitopes identified on p24 are highly conserved between 12 HIV-1 isolates and were recognized by both of the immunized primates. These sequences may therefore be useful for priming a broadly reactive immune response to HIV-1.  相似文献   

15.
Three long synthetic peptides corresponding to amino (N), repeat (R) and carboxyl (C) regions of the Plasmodium vivax circumsporozoite (CS) protein were synthesised and used to assess their potential as vaccine candidates. Antigenicity studies were carried out using human blood samples from residents of a malaria-endemic area of Colombia, and immunogenicity was tested in Aotus monkeys. The N and C peptides spanned the total native amino and carboxyl flanking regions, whereas the R peptide corresponded to a construct based on the first central nona-peptide repeated in tandem three times and colinearly linked to a universal T-cell epitope (ptt-30) derived from tetanus toxin. All three peptides had been shown previously to contain several B-, T-helper (Th) and Cytotoxic T Lymphocytes (CTL) epitopes. Sixty-one percent of the human sera reacted with the R region, whereas 35 and 39% of the samples had antibodies against the N and C peptides, respectively. Human Peripheral Blood Mononuclear Cells (PBMC) showed higher levels of IFN-gamma than IL-4 when stimulated with peptides containing Th epitopes. Aotus monkeys immunised with the peptides formulated in either Montanide ISA720 or Freund's adjuvants produced strong antibody responses that recognised the peptide immunogens and the native circumsporozoite protein on sporozoites. Additionally, high IFN-gamma production was induced when Aotus lymphocytes were stimulated in vitro with each of the three peptides. We observed boosting of antibody responses and IFN-gamma production by exposure to live sporozoites. These results confirm the high antigenicity and immunogenicity of such synthetic polypeptides and underline their vaccine potential.  相似文献   

16.
The fate and disposition of the circumsporozoite (CS) protein of Plasmodium falciparum was investigated during hepatoma cell invasion with several sera raised against defined CS peptides, including both repeat and nonrepeat regions spanning approximately 60% of the P. falciparum CS gene product. Distribution of the protein, as revealed by immunoelectron microscopy, was limited to the surface of the sporozoite both before and after invasion. In particular, no CS protein antigen was detected in association with either the parasitophorous vacuole membrane or the host cell surface.  相似文献   

17.
In order to identify T cell epitopes recognized by human in the Plasmodium vivax circumsporozoite protein, 28 overlapping synthetic peptides spanning the entire circumsporozoite protein were tested for their ability to stimulate proliferation of PBMC from 22 adults living in a malaria-endemic area of the Colombian Pacific Coast and from four individuals who never had a history of malaria infection. In addition, BALB/c mice were immunized with pools of peptides, and their lymph node cells were stimulated in vitro with individual peptides. Four epitopes were recognized by human lymphocytes but not all of them by mice. One of the epitopes was located inside the central repetitive B cell immunodominant domain. Several of the variants of the repeats were recognized by about one-third of the studied individuals. Another T cell epitope was located in the amino terminus and the other two in the carboxyl region. Peptides were recognized by both immune and nonimmune donors. Some of them were frequently recognized suggesting a lack of genetic restriction, whereas some others were recognized by only a few individuals but induced strong proliferation. These epitopes may be of potential value for a malaria subunit vaccine.  相似文献   

18.
The effects of neonatal administration of immunogenic peptides on subsequent T and B cell function were tested using defined T and B cell peptide epitopes from the circumsporozoite (CS) protein of the human malaria parasite, Plasmodium falciparum. We observed that neonatal exposure of responder strain mice to either of the two major murine T sites on the CS protein resulted in specific tolerance of both helper and proliferating T cells. One of these T sites, (NANP)n, is also the immunodominant B epitope on the CS protein. We took advantage of this fact to directly compare the effects of neonatal peptide administration on B and T cell function and observed that mice whose helper and proliferating T cells were tolerant to (NANP)n nevertheless produced normal levels of anti-(NANP)n antibodies after immunization with keyhole limpet hemocyanin-(NANP)n. Our results demonstrate differential susceptibility of the Th cells and B cells to toleragens and suggest that self-tolerance to peptide epitopes during the neonatal period reflects predominantly Th cell tolerance.  相似文献   

19.
Thrombospondin is one of a class of adhesive glycoproteins that mediate cell-to-cell and cell-to-matrix interactions. We have used two monoclonal antibodies to isolate cDNA clones of thrombospondin from a human endothelial cell cDNA library and have determined the complete nucleotide sequence of the coding region. Three regions of known amino acid sequence of human platelet thrombospondin confirm that the clones are authentic. Three types of repeating amino acid sequence are present in thrombospondin. The first is 57 amino acids long and shows homology with circumsporozoite protein from Plasmodium falciparum. The second is 50-60 amino acids long and shows homology with epidermal growth factor precursor. The third occurs as a continuous eightfold repeat of a 38-residue sequence; structural homology with parvalbumin and calmodulin indicates that these repeats constitute the multiple calcium-binding sites of thrombospondin. The amino acid sequence arg-gly-asp-ala is included in the last type 3 repeat. This sequence is probably the site for the association of thrombospondin with cells. In addition, localized homologies with procollagen, fibronectin, and von Willebrand factor are present in one region of the thrombospondin molecule.  相似文献   

20.
In order to provide a rational basis for the development of a pre-erythrocytic malaria vaccine we have aimed at: (a) elucidating the mechanisms of protection, and (b) identifying vaccine formulations that best elicit protection in experimental animals and humans. Based on earlier successful immunization of experimental animals with irradiated sporozoites, human volunteers were exposed to the bites of large numbers of Plasmodium falciparum or P. vivax infected irradiated mosquitoes. The result of this vaccine trial demonstrated for the first time that a pre-erythrocytic vaccine, administered to humans, can result in their complete resistance to malaria infection. However, since infected irradiated mosquitoes are unavailable for large scale vaccination, the alternative is to develop subunit vaccines. The human trials using irradiated sporozoites provided valuable information on the human immune responses to pre-erythrocytic stages and studies on mice an excellent experimental model to characterize protective immune mechanisms. The circumsporozoite protein, the first pre-erythrocytic antigen identified, is present in all malaria species, displaying a similar structure, with a central region of repeats, and two conserved regions, essential for parasite development. Most pre-erythrocytic vaccine candidates are based on the CS protein, expressed in various cell lines, microorganisms, and recently the corresponding DNA. We and others have identified CS-specific B and T cell epitopes, recognized by the rodent and human immune systems, and used them for the development of synthetic vaccines. We used synthetic peptide vaccines, multiple antigen peptides and polyoximes, for immunization, first in experimental animals, and recently in two human safety and immunogenicity trials. We also report here on our work on T cell mediated immunity, particularly the protection of mice immunized with viral vectors expressing CS-specific cytotoxic CD8+ T cell epitopes, and the striking booster effect of recombinant vaccinia virus. To what degree CD8+ T cells, and/or other T cells specific for sporozoites and/or liver stage epitopes, contribute to pre-erythrocytic protective immunity in humans, remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号