首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

2.
Membrane vesicles can be obtained from epimastigote forms of Trypansoma cruzi by incubating cells with either cross-linking reagents or acid pH. Acetate, phtalate or citrate, at pH 4.0, but not at higher pH values, were able to induce plasma membrane vesiculation. Vesicles have been purified by sucrose density centrifugation and their membrane origin was demonstrated by the following criteria: (a) Vesicles are 5--10 times richer in protein-bound iodine when they are prepared from cells previously labeled with 131I by the lactoperoxidase catalyzed reaction. (b) Electron microscopy of vesiculating cells shows physical continuity between cell plasma membrane and vesicle membrane. (c) Antibodies prepared against purified vesicles are able to agglutinate epimastigote forms of T. cruzi with sera dilutions up to 1 : 256 to 1 : 512. (d) Freeze-fracture studies of the purified vesicles have shown images of faces P and E compatible with known images of the intact cell plasma membrane. Typical preparations of acetate vesicles present the following characteristics: total carbohydrate : protein=1.5--2.0; orcinol : protein-0.07 and absence of diphenylamine reaction. Vesicles contain 0.2--0.5% and 0.3--1.0% of the total homogenate protein and carbohydrate, respectively. The presence of 10 major protein bands and 30--50-fold enrichment of the four sugar-containing macromolecules present in epimastigote forms of T. cruzi have been demonstrated in these preparations.  相似文献   

3.
We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome.  相似文献   

4.
Infection of mice with Trypanosoma cruzi elicits the production of parasite-specific antibodies which reach high levels and remain elevated for at least 105 days of infection. The more susceptible C3H(He) mouse actually has a higher level of "natural" antibodies for T. cruzi but may show a greater lag time in the production of antibodies in response to infection than the more resistant C57BL/6 mouse. Comparison of the kinetics of antibody production against T. cruzi and the numbers of immunoglobulin-producing cells in the spleen during the course of infection suggests that a large number of the immunoglobulin-producing cells are probably producing antibodies directed against the parasite and are not the result of an exhaustive polyclonal B-cell activation. Cell numbers in the spleen change dramatically both in total numbers and in the percentage of different cell types during infection with T. cruzi. The percentage of T cells in the spleen remains relatively unchanged throughout infection in both mouse strains tested but numbers of Ig-positive cells decrease markedly during the acute phase of infection while macrophage numbers increase up to sixfold. Cell numbers and proportions of B cells, T cells, and macrophages return to near normal values by 105 days of infection in the C57BL/6 mouse.  相似文献   

5.
Cellular populations involved in resistance against T. cruzi infection were characterized from mice chronically infected with the parasite. Mice transfused with spleen cells (SC), nylon-wool-non-adherent spleen cells (NWNA) or sera from mice chronically infected with T. cruzi, showed an enhanced resistance against challenge with the parasite. The protective activity of NWNA but not of SC was completely abrogated by treatment with anti-Thy1.2 monoclonal antibodies (mAb) and complement (C). Pretreatment of NWNA cells from chronically infected mice with either anti-L3T4 or anti-Lyt 2.2 mAb partially reduced the transfer of resistance. When both L3T4+ and Lyt2.2+ cells were depleted from NWNA populations, transfer of resistance was abolished. These results appear to indicate that L3T4+, Lyt2.2+ T cell subsets and non-T cells are involved in the immunity to T. cruzi.  相似文献   

6.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

7.
The mechanism by which Trypanosoma cruzi egresses from infected cells at the end of the intracellular replication cycle is not understood. This study explored the role of T. cruzi-derived proteases and host-cell membrane permeability during the parasite's egress process. Treatment with a fluoromethyl ketone, known to inhibit the parasite's major protease, significantly reduced parasite egress. In addition, in the late stages of intracellular infection, cells infected with T. cruzi showed increased permeability as evidenced by dye exclusion tests. Furthermore, parasites could be antibody stained inside host cells without chemical permeabilization of the plasma membrane. These results suggest that in advanced stages of the intracellular cycle of T. cruzi, the host cells lose membrane integrity. Previous studies in our laboratory have found that antibodies present in sera of mice chronically infected with T. cruzi (antiegressin) bind the surface of infected cells and reduce parasite egress. In agreement with these reports, western blot analysis showed that several proteins in infected cell membrane extracts reacted with antibodies from infected mouse serum. The findings reported herein might have implications in the process of T. cruzi egress, as well as in the mechanism of action of antiegressin.  相似文献   

8.
The mechanisms by which the causative agent of Chagas' disease impair its host's immune response are of paramount importance but poorly understood. Results presented in this paper show for the first time that Trypanosoma cruzi trypomastigotes infect T lymphocytes in vitro and more interestingly in vivo, and that trypomastigotes released from infected cells are infectious. In addition treatment of purified human T lymphocytes with McAb against CD3 and HLA-DR antigens significantly inhibited parasite infection. T. cruzi antigens were detected on the membrane of infected T cells and could therefore represents targets for cytotoxic mechanisms. These results might have important consequences for the understanding of the dramatic disruption of immune response observed during Chagas' disease and more generally provide additional information on T lymphocyte infection by pathogens.  相似文献   

9.
Invasion of mammalian cells by the protozoan parasite Trypanosoma cruzi occurs by an actin-independent mechanism distinct from phagocytosis. Clusters of host lysosomes are observed at the site of parasite attachment, and lysosomal markers are detected in the vacuolar membrane at early stages of the entry process. These observations led to the hypothesis that the trypanosomes recruit host lysosomes to their attachment site, and that lysosomal fusion serves as a source of membrane to form the parasitophorous vacuole. Here we directly demonstrate directional migration of lysosomes to the parasite entry site, using time-lapse video-enhanced microscopy of L6E9 myoblasts exposed to T. cruzi trypomastigotes. BSA-gold-loaded lysosomes moved towards the cell periphery, in the direction of the parasite attachment site, but only when their original position was less than 11-12 microns from the invasion site. Lysosomes more distant from the invasion area exhibited only the short multi-directional saltatory movements previously described for lysosomes, regardless of their proximity to the cell margins. Specific depletion of peripheral lysosomes was obtained by microinjection of NRK cells with antibodies against the cytoplasmic domain of lgp 120, a treatment that aggregated lysosomes in the perinuclear area and inhibited T. cruzi entry. The microtubule- binding drugs nocodazole, colchicine, vinblastine, and taxol also inhibited invasion, in both NRK and L6E9 cells. Furthermore, microinjection of antibodies to the heavy chain of kinesin blocked the acidification-induced, microtubule-dependent redistribution of lysosomes to the host cell periphery, and reduced trypomastigote entry. Our results therefore demonstrate that during T. cruzi invasion of host cells lysosomes are mobilized from the immediately surrounding area, and that availability of lysosomes at the cell periphery and microtubule/kinesin-mediated transport are requirements for parasite entry.  相似文献   

10.
A mitochondrial outer membrane protein of approximately 22 kDa (1C9-2) was purified from Vero cells assessing immunoreactivity with a monoclonal antibody, and the cDNA was cloned based on the partial amino acid sequence of the trypsin-digested fragments. 1C9-2 had 19-20% sequence identity to fungal Tom22, a component of the preprotein translocase of the outer membrane (the TOM complex) with receptor and organizer functions. Despite such a low sequence identity, both shared a remarkable structural similarity in the hydrophobicity profile, membrane topology in the Ncyt-Cin orientation through a transmembrane domain in the middle of the molecule, and the abundant acidic amino acid residues in the N-terminal domain. The antibodies against 1C9-2 inhibited the import of a matrix-targeted preprotein into isolated mitochondria. Blue native polyacrylamide gel electrophoresis of digitonin-solubilized outer membranes revealed that 1C9-2 is firmly associated with TOM40 in the approximately 400-kDa complex, with a size and composition similar to those of the fungal TOM core complex. Furthermore, 1C9-2 complemented the defects of growth and mitochondrial protein import in Deltatom22 yeast cells. Taken together, these results demonstrate that 1C9-2 is a functional homologue of fungal Tom22 and functions as a component of the TOM complex.  相似文献   

11.
ABSTRACT. In this study we have examined the distribution of epitopes defined by monoclonal antibodies raised against Trypanosoma cruzi amastigotes during the intraceullar life cycle of the parasite. We have raised monoclonal antibodies towards amastigote forms and performed preliminary immunochemical characterization of their reactivities. MAB 1D9, 3G8, 2B7, 3B9, and 4B9, and 4B9 react with carbohydrate epitopes of the parasite major surface glycoprotein—Ssp-4 defined by MAB 2C2 [5]: MAB 4B5 reacts with a noncarbohydrate epitope in all developmental stages of the parasite, and MAB 3B2 also detects a noncarbohydrate epitope preferentially in T. cruzi flagellared forms. Vero cells infected with tissue culture-derived trypomastigotes of clone D11 (G strain) were fixed at different times during the intraceullular proliferation of parasites, and processed for immjno-electron microscopy and confocal immunoflurescence with the different monoclonal antibodies. We observed that while the surface distribution of MAB 2C2 and 4B9 epitopes was uniform throughout the cycle, MAB 1D9, 3G8, and 2B7 reacted with cytoplasmic membrance-bound compartments of the amastigotes. MAB 3B9 displayed a unique surface dentate pattern in some amastigotes. MAB 4B5 recognized a curved-shaped structure at the flagellar pocket region in some intracellular amastigotes and localized to the membrane in dividing forms. In intracellular trypomastigotes, MAB 4B5 also displayed a punctate pattern near the flagellar pocket.  相似文献   

12.
Sec16p potentiates the action of COPII proteins to bud transport vesicles   总被引:10,自引:0,他引:10  
Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is approximately 10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.  相似文献   

13.
One of the hallmarks of Trypanosoma cruzi invasion of non-professional phagocytes is facilitation of the process by host cell actin depolymerization. Host cell entry by invasive T. cruzi trypomastigotes is accomplished by exploiting a cellular wound repair process involving Ca(2+)-regulated lysosome exocytosis (i.e. lysosome-dependent) or by engaging a recently recognized lysosome-independent pathway. It was originally postulated that cortical actin microfilaments present a barrier to lysosome-plasma membrane fusion and that transient actin depolymerization enhances T. cruzi entry by increasing access to the plasma membrane for lysosome fusion. Here we demonstrate that cytochalasin D treatment of host cells inhibits early lysosome association with invading T. cruzi trypomastigotes by uncoupling the cell penetration step from lysosome recruitment and/or fusion. These findings provide the first indication that lysosome-dependent T. cruzi entry is initiated by plasma membrane invagination similar to that observed for lysosome-independent entry. Furthermore, prolonged disruption of host cell actin microfilaments results in significant loss of internalized parasites from infected host cells. Thus, the ability of internalized trypomastigotes to remain cell-associated and to fuse with host cell lysosomes is critically dependent upon host cell actin reassembly, revealing an unanticipated role for cellular actin remodelling in the T. cruzi invasion process.  相似文献   

14.
Macrophage infectivity potentiators are membrane proteins described as virulence factors in bacterial intracellular parasites, such as Legionella and Chlamydia. These factors share amino acid homology to eukaryotic peptidyl-prolyl cis-trans isomerases that are inhibited by FK506, an inhibitor of signal transduction in mammalian cells with potent immunosuppressor activity. We report here the characterization of a protein released into the culture medium by the infective stage of the protozoan intracellular parasite Trypanosoma cruzi. The protein possesses a peptidyl-prolyl cis-trans isomerase activity that is inhibited by FK506 and its non-immunosuppressing derivative L-685,818. The corresponding gene presents sequence homology with bacterial macrophage infectivity potentiators. The addition of the protein, produced heterologously in Escherichia coli, to cultures of trypomastigotes and simian epithelial or HeLa cells enhances invasion of the mammalian cells by the parasites. Antibodies raised in mice against the T.cruzi isomerase greatly reduce infectivity. A similar reduction of infectivity is obtained by addition to the cultures of FK506 and L-685,818. We concluded that the T.cruzi isomerase is involved in cell invasion.  相似文献   

15.
OKT3 monoclonal antibody, a human T cell mitogen, induced interferon production by cultured mononuclear cells at 10(-11) M concentrations. Interferon was secreted only under conditions wherein OKT3 was mitogenic, and production was correlated with cell proliferation. Thus, like mitogenesis, interferon secretion reached a peak 3 days after OKT3 stimulation, was inhibited by a factor(s) in human serum, and required 1000 times higher concentrations of Fab and F(ab')2 fragments of OKT3 for induction. The interferon was most likely of "gamma" (immune) type, because pH 2 and 56 degrees C treatments denatured it, whereas anti-alpha or -beta interferon antibodies did not. Mononuclear cells were fractionated into subpopulations that contained OKT4+ cells (helper/inducer T cells), OKT8+ cells (cytotoxic/suppressor T cells), and OKM1+ cells (monocytes) by combining sheep red blood cell rosetting and complement-mediated lysis using monoclonal antibodies against specific cell types. Both OKT4+ and OKT8+ cells proliferated upon OKT3 stimulation with the absolute requirement of OKM1+ cells. However, OKT4+ cells plus OKM1+ cells were necessary for the secretion of interferon. Studies with selective pretreatments with mitomycin C suggested that gamma-interferon was secreted by the OKT4+ cells and that the OKM1+ population subserved an accessory function.  相似文献   

16.
Secretory leukocyte protease inhibitor (SLPI) has multiple functions, including inhibition of protease activity, microbial growth, and inflammatory responses. In this study, we demonstrate that mouse SLPI is critically involved in innate host defense against pulmonary mycobacterial infection. During the early phase of respiratory infection with Mycobacterium bovis bacillus Calmette-Guérin, SLPI was produced by bronchial and alveolar epithelial cells, as well as alveolar macrophages, and secreted into the alveolar space. Recombinant mouse SLPI effectively inhibited in vitro growth of bacillus Calmette-Guérin and Mycobacterium tuberculosis through disruption of the mycobacterial cell wall structure. Each of the two whey acidic protein domains in SLPI was sufficient for inhibiting mycobacterial growth. Cationic residues within the whey acidic protein domains of SLPI were essential for disruption of mycobacterial cell walls. Mice lacking SLPI were highly susceptible to pulmonary infection with M. tuberculosis. Thus, mouse SLPI is an essential component of innate host defense against mycobacteria at the respiratory mucosal surface.  相似文献   

17.
Evasion of the complement system by microorganisms is an essential event in the establishment of infection. In the case of Trypanosoma cruzi, the causative agent of Chagas disease, resistance to complement-mediated lysis is a developmentally regulated characteristic. Infectious trypomastigotes are resistant to complement-mediated lysis in the absence of immune antibodies, whereas the insect forms (epimastigotes) are sensitive to lysis via the alternative complement pathway. We have purified a developmentally regulated, trypomastigote glycoprotein, gp160, and shown that it has complement regulatory activity. The T. cruzi gp160 restricts complement activation by binding the complement component C3b and inhibiting C3 convertase formation. The protein is anchored in the parasite membrane via a glycosyl phosphatidylinositol linkage, similar to the human complement regulatory protein, decay-accelerating factor. Using anti-gp160 antibodies we have isolated a bacteriophage lgt11 clone expressing a portion of the gp160 gene that shares significant DNA sequence homology with the human DAF gene. These results provide functional, biochemical, and genetic evidence that the T. cruzi gp160 is a member of the C3/C4 binding family of complement regulatory proteins, and that gp160 may provide the infectious trypomastigotes with a means of evading the destructive effects of complement.  相似文献   

18.
Antibodies against heart vascular structures and striated muscle cells interstitium (EVI antibodies) persist in Chagas' disease patients who had been cured by specific treatment as demonstrated by negative xenodiagnosis, conventional serology (CS) and complement mediated lysis (CoML). On the other hand, EVI antibodies are either present or absent in treated patients presenting positive CS but negative CoML. Since CoML detects antibodies associated to resistance, EVI antibodies are not likely to participate in the control of T. cruzi infections although they might be induced by cross-reacting antigens of heart cells and the parasite. They are neither necessarily related to antibodies responsible for CS. Absorption with T. cruzi and heart tissue confirms the suggestion that EVI antibodies are induced by a number of antigenic determinants, most from heart structures with a minor participation of T. cruzi antigens.  相似文献   

19.
The gram-positive bacillus Listeria monocytogenes gains entry into host cells through a phagosome membrane that forms around entering bacteria. During the early stages of internalization the invading bacteria appear to modify the protein composition of the forming phagosome membrane in J774 cells. MHC class II molecules on the cell surface and exposed surface molecules available for biotinylation are excluded from the bacteria-host cell membrane interface and from the forming phagosome. This exclusion of MHC class II molecules from the early phagosome may partially help to explain previous reports suggesting that L. monocytogenes is able to interfere with antigen presentation. Inside the host cell, MHC class II molecules are delivered to the phagosome membrane. This is followed by delivery of LAMP 1, a marker of late endocytic compartments, and fusion with low-pH compartments. The bacteria then escape into the cell cytoplasm, possibly assisted by rapid delivery of this low-pH environment.  相似文献   

20.
Hydroperoxide metabolism in Crithidia fasciculata has recently been shown to be catalyzed by a cascade of three oxidoreductases comprising trypanothione reductase (TR), tryparedoxin (TXN1), and tryparedoxin peroxidase (TXNPx) (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). The existence of this metabolic system in the human pathogen Trypanosoma cruzi is supported here by immunohistochemistry. Epimastigotes of T. cruzi display strong immunoreactivity with antibodies raised against TXN1 and TXNPx of C. fasciculata. In addition, a full-length open reading frame presumed to encode a peroxiredoxin-type protein in T. cruzi (Acc. Nr. AJ 012101) was heterologously expressed in Escherichia coli and shown to exhibit tryparedoxin peroxidase activity. With TXN, TXNPx, trypanothione and TR, T. cruzi possesses all components constituting the crithidial peroxidase system. It is concluded that the antioxidant defense of T. cruzi also depends on the NADPH-fuelled, trypanothione-mediated enzymatic hydroperoxide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号