首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroglobin (Ngb) and cytoglobin (Cygb), recent additions to the globin family, display a hexa-coordinated (bis-histidyl) heme in the absence of external ligands. Although these proteins have the classical globin fold they reveal a very high thermal stability with a melting temperature (Tm) of 100 degrees C for Ngb and 95 degrees C for Cygb. Moreover, flash photolysis experiments at high temperatures reveal that Ngb remains functional at 90 degrees C. Human Ngb may have a disulfide bond in the CD loop region; reduction of the disulfide bond increases the affinity of the iron atom for the distal (E7) histidine, and leads to a 3 degrees C increase in the T(m) for ferrous Ngb. A similar Tm is found for a mutant of human Ngb without cysteines. Apparently, the disulfide bond is not involved directly in protein stability, but may influence the stability indirectly because it modifies the affinity of the distal histidine. Mutation of the distal histidine leads to lower thermal stability, similar to that for other globins. Only globins with a high affinity of the distal histidine show the very high thermal stability, indicating that stable hexa-coordination is necessary for the enhanced thermal stability; the CD loop which contains the cysteines appears as a critical region in the neuroglobin thermal stability, because it may influence the affinity of the distal histidine.  相似文献   

2.
Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.  相似文献   

3.
Synechocystis hemoglobin contains an unprecedented covalent bond between a nonaxial histidine side chain (H117) and the heme 2-vinyl. This bond has been previously shown to stabilize the ferric protein against denaturation, and also to affect the kinetics of cyanide association. However, it is unclear why Synechocystis hemoglobin would require the additional degree of stabilization accompanying the His117-heme 2-vinyl bond because it also displays endogenous bis-histidyl axial heme coordination, which should greatly assist heme retention. Furthermore, the mechanism by which the His117-heme 2-vinyl bond affects ligand binding has not been reported, nor has any investigation of the role of this bond on the structure and function of the protein in the ferrous oxidation state. Here we report an investigation of the role of the Synechocystis hemoglobin His117-heme 2-vinyl bond on structure, heme coordination, exogenous ligand binding, and stability in both the ferrous and ferric oxidation states. Our results reveal that hexacoordinate Synechocystis hemoglobin lacking this bond is less stable in the ferrous oxidation state than the ferric, which is surprising in light of our understanding of pentacoordinate Hb stability, in which the ferric protein is always less stable. It is also demonstrated that removal of the His117-heme 2-vinyl bond increases the affinity constant for intramolecular histidine coordination in the ferric oxidation state, thus presenting greater competition for the ligand binding site and lowering the observed rate and affinity constants for exogenous ligands.  相似文献   

4.
Neuroglobin and cytoglobin reversibly bind oxygen in competition with the distal histidine, and the observed oxygen affinity therefore depends on the properties of both ligands. In the absence of an external ligand, the iron atom of these globins is hexacoordinated. There are three cysteine residues in human neuroglobin; those at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. Both cysteine residues in cytoglobin, although localized in other positions than in human neuroglobin, may form a disulfide bond as well. The existence and position of these disulfide bonds was demonstrated by mass spectrometry and thiol accessibility studies. Mutation of the cysteines involved, or the use of reducing agents to break the S-S bond, led to a decrease in the observed oxygen affinity of human neuroglobin by an order of magnitude. The critical parameter is the histidine dissociation rate, which changes by about a factor of 10. The same effect is observed with human cytoglobin, although to a much lesser extent (less than a factor of 2). These results suggest a novel mechanism for the regulation of oxygen binding; contact with an appropriate electron donor would provoke the release of oxygen. Hence the oxygen affinity would be directly linked to the redox state of the cell.  相似文献   

5.
Xu J  Yin G  Du W 《Proteins》2011,79(1):191-202
Neuroglobin (Ngb), a hexa‐coordinated hemoprotein primarily expressed in the brain and retina, is thought to be involved in neuroprotection and signal transduction. Ngb can reversibly bind small ligands such as O2 and CO to the heme iron by replacing the distal histidine which is bound to the iron as the endogenous ligand. In this work, molecular dynamics (MD) simulations were performed to investigate the functionally related structural properties and dynamical characteristics in carboxy mouse neuroglobin and three distal mutants including single mutants H64V, K67T and double mutant H64V/K67T. MD simulations suggest that the heme sliding motion induced by the binding of exogenous ligand is affected by the distal mutation obviously. Accompanying changes in loop flexibility and internal cavities imply the structural rearrangement of Ngb. Moreover, the solvent accessibility of heme and some crucial residues are influenced revealing an interactive network on the distal side. The work elucidates that the key residues K67 at E10 and H64 at E7 are significant in modulating the heme sliding and hence the structural and physiological function of Ngb. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Neuroglobin (Ngb) is a recently discovered protein that shows only minor sequence similarity with myoglobin and hemoglobin but conforms to the typical 3-over-3 alpha-helical fold characteristic of vertebrate globins. An intriguing feature of Ngb is its heme hexacoordination in the absence of external ligands, observed both in the ferrous and in the ferric (met) forms. In Ngb, the imidazole of a histidine residue (His-64) in the distal position, above the heme plane, provides the sixth coordination bond. In this work, a valine residue was introduced at position 64 (H64V variant) to clarify the possible role(s) of the distal residue in protecting the heme iron of Ngb from attack by strong oxidants. SDS-PAGE analyses revealed that the oxidation of the H64V variant of metNgb by H 2O 2 resulted in the formation of dimeric and trimeric products in contrast to the native protein. Dityrosine cross-links were shown by their fluorescence to be present in the oligomeric products. When the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was included in the reaction mixture, nitrone adducts were detected by immuno-spin trapping. The specific location of the DMPO adducts on the H64V variant protein was determined by a mass spectrometry method that combines off-line immuno-spin trapping and chromatographic procedures. This method revealed Tyr-88 to be the site of modification by DMPO. The presence of His-64 in the wild-type protein results in the nearly complete loss of detectable radical adducts. Together, the data support the argument that wild-type Ngb is protected from attack by H 2O 2 by the coordinated distal His.  相似文献   

7.
Globins are respiratory proteins that reversibly bind dioxygen and other small ligands at the iron of a heme prosthetic group. Hemoglobin and myoglobin are the most prominent members of this protein family. Unexpectedly a few years ago a new member was discovered and called neuroglobin (Ngb), being predominantly expressed in the brain. Ngb is a single polypeptide of 151 amino acids and despite the small sequence similarity with other globins, it displays the typical globin fold. Oxygen, nitric oxide, or carbon monoxide can displace the distal histidine which, in ferrous Ngb as well as in ferric Ngb, is bound to the iron, yielding a reversible adduct. Recent crystallographic data on carboxy Ngb show that binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities; in particular, the huge internal tunnel that connects the bulk with the active site, peculiar to Ngb, is heavily reorganized. We report the results of extended (90 ns) molecular dynamics simulations in water of ferrous deoxy and carboxy murine neuroglobin, which are both coordinated on the distal site, in the latter case by CO and in the former one by the distal His(64)(E7). The long timescale of the simulations allowed us to characterize the equilibrated protein dynamics and to compare protein structure and dynamical behavior coupled to the binding of an exogenous ligand. We have characterized the heme sliding motion, the topological reorganization of the internal cavities, the dynamics of the distal histidine, and particularly the conformational change of the CD loop, whose flexibility depends ligand binding.  相似文献   

8.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

9.
In this report, we demonstrate that the internal disulfide bridge in human neuroglobin modulates structural changes associated with ligand photo-dissociation from the heme active site. This is evident from time-resolved photothermal studies of CO photo-dissociation, which reveal a 13.4± 0.9 mL mol−1 volume expansion upon ligand photo-release from human neuroglobin, whereas the CO dissociation from rat neuroglobin leads to a significantly smaller volume change (ΔV = 4.6 ± 0.3 mL mol−1). Reduction of the internal disulfide bond in human neuroglobin leads to conformational changes (reflected by ΔV) nearly identical to those observed for rat Ngb. Our data favor the hypothesis that the disulfide bond between Cys46 and Cys55 modulates the functioning of human neuroglobin.  相似文献   

10.
X-ray difference Fourier analysis at 2.8 Å resolution shows that the tertiary structures of horse cyanide methemoglobin and methemoglobin differ significantly. The conformations of the heme groups and their interactions with the globin are altered. Short contacts with globin side chains affect cyanide binding to the hemes, and the changes in globin-ligand contact upon substitution of cyanide for water in turn directly affect globin structure. Although the ligand peaks lie off the heme axes, the atoms FeCN may still lie on a straight line (as they do in small iron cyanide complexes), with this line not normal to the mean heme plane. This linear binding configuration is consistent with the observed motion and deformation of the porphyrin. Although motion of the iron atoms is not directly apparent, there is evidence that some changes in tertiary structure are induced by shortening of the iron-pyrrol nitrogen bond lengths. This and other studies suggest that the structural changes responsible for co-operativity in hemoglobin may be initiated not merely by an alteration in the covalent porphyrin-proximal histidine linkage, but by changes in the noncovalent interactions of the globin with the ligand and porphyrin as well.  相似文献   

11.
Neuroglobin (Ngb), a recently discovered ancient heme protein, presents the typical globin fold and is around 20% identical to myoglobin (Mb). In contrast with Mb, however, its heme is hexacoordinated (6c). It is expressed in the nervous system and has been the subject of numerous investigations in the last years, but its function is still unclear. The proposed roles include oxygen transport, reactive oxygen species (ROS) detoxification, hypoxia protection, and redox state sensing. All proposed functions require distal histidine dissociation from the heme to yield a reactive iron. With the aim of understanding the 6c to 5c transition, we have performed molecular dynamics simulations for ferrous Ngb in the 6c, 5c, and oxy states. We also computed free energy profiles associated with the transition employing an advanced sampling technique. Finally, we studied the effect of the redox state of CysCD7 and CysD5, which are known to form a disulfide bridge. Our results show that protein oxidation promotes a stabilization of the pentacoordinated species, thus favoring the protein to adopt the more reactive state and supporting the existence of a molecular mechanism whereby O2 would be released under hypoxic conditions, thereby suggesting an O(2) storage function for Ngb. Taken together, our results provide structural information not available experimentally which may shed light on the protein proposed functions, particularly as a redox sensor.  相似文献   

12.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

13.
The H25C and H25Y mutants of human heme oxygenase-1 (hHO-1), in which the proximal iron ligand is replaced by a cysteine or tyrosine, have been expressed and characterized. Resonance Raman studies indicate that the ferric heme complexes of these proteins, like the complex of the H25A mutant but unlike that of the wild type, are 5-coordinate high-spin. Labeling of the iron with 54Fe confirms that the proximal ligand in the ferric H25C protein is a cysteine thiolate. Resonance-enhanced tyrosinate modes in the resonance Raman spectrum of the H25Y.heme complex provide direct evidence for tyrosinate ligation in this protein. The H25C and H25Y heme complexes are reduced to the ferrous state by cytochrome P450 reductase but do not catalyze alpha-meso-hydroxylation of the heme or its conversion to biliverdin. Exposure of the ferrous heme complexes to O2 does not give detectable ferrous-dioxy complexes and leads to the uncoupled reduction of O2 to H2O2. Resonance Raman studies show that the ferrous H25C and H25Y heme complexes are present in both 5-coordinate high-spin and 4-coordinate intermediate-spin configurations. This finding indicates that the proximal cysteine and tyrosine ligand in the ferric H25C and H25Y complexes, respectively, dissociates upon reduction to the ferrous state. This is confirmed by the spectroscopic properties of the ferrous-CO complexes. Reduction potential measurements establish that reduction of the mutants by NADPH-cytochrome P450 reductase, as observed, is thermodynamically allowed. The two proximal ligand mutations thus destabilize the ferrous-dioxy complex and uncouple the reduction of O2 from oxidation of the heme group. The proximal histidine ligand, for geometric or electronic reasons, is specifically required for normal heme oxygenase catalysis.  相似文献   

14.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

15.
Yin G  Li Y  Li J  Li J  Du W  Wei Q  Fang W 《Biophysical chemistry》2008,136(2-3):115-123
Solution (1)H NMR spectroscopy has been carried out to investigate the molecular and electronic structures of the active site in H64Q/V68F double mutant mouse neuroglobin in the cyanomet form. Two heme orientations resulting from a 180 degrees rotation about the alpha-gamma-meso axis were observed with a population ratio about 1:1, and the clearly distinguished B isomer was used to perform the study. Based on the analysis of the dipolar shifts and paramagnetic relaxation constants, the distal Gln(64)(E7) side chain is obtained to adopt an orientation that may produce hydrogen bond between the N(epsilon)H(1) and the Fe-bound cyanide. The side chain of Phe(68)(E11) is oriented out of the heme pocket just like that in triple mutant of cyanide complex of sperm whale myoglobin. A 15 degrees rotation of the imidazole ring in axial His(96) is observed, which is close to the varphi angle determined from the crystal structure of NgbCO. The quantitative determinations of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that cyanide is tilted by 8 degrees from the heme normal which allows for contact to the Gln(64)(E7) N(epsilon)H(1). The E7 and E11 residues appear to control the direction and the extent of tilt of the bound ligand. Furthermore, the tilt of the ligand has no obvious influence on the heme heterogeneity of cyanide ligation for isomer A/B of the wild type and mutant protein, indicating that factors other than steric effects, such as polarity of heme pocket, impacts on ligand binding affinity.  相似文献   

16.
Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate l-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine–tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.  相似文献   

17.
To investigate the functional and structural roles of the proximal thiolate ligand in cytochrome P450cam, we prepared the C357H mutant of the enzyme in which the axial cysteine residue (Cys357) was replaced with a histidine residue. We obtained the unstable C357H mutant by developing a new preparation procedure involving in vitro folding of P450cam from the inclusion bodies. The C357H mutant in the ferrous-CO form exhibited the Soret peak at 420 nm and the Fe-CO stretching line at 498 cm-1, indicating a neutral histidine residue as the axial ligand. However, another internal ligand is coordinated to the heme iron as the sixth ligand in the ferric and ferrous forms of the C357H mutant, suggesting the collapse of the substrate-binding site. The C357H mutant showed no catalytic activity for camphor hydroxylation and the reduced heterolytic/homolytic ratio of the O-O bond scission in the reaction with cumene hydroperoxide. The present observations indicate that the thiolate coordination in P450cam is important for the construction of the heme pocket and the heterolysis of the O-O bond.  相似文献   

18.
M R Thomas  S G Boxer 《Biochemistry》2001,40(29):8588-8596
Nitric oxide (NO) binds to the myoglobin (Mb) cavity mutant, H93G, forming either a 5- or 6-coordinate Fe--NO heme complex. The H93G mutation replaces the proximal histidine of Mb with glycine, allowing exogenous ligands to occupy the proximal binding site. In the absence of the covalently attached proximal ligand, NO could bind to H93G from the proximal side of the heme rather than the typical diatomic binding pocket on the distal side when the 5-coordinate complex forms. The question of whether NO binds on the distal or proximal side was addressed by (19)F NMR. Site-directed mutagenesis was used to introduce unique cysteine residues at the protein surface on either the distal (S58C) or proximal (L149C) side, approximately equidistant from and perpendicular to the heme plane of both wild-type and H93G Mb. The cysteine thiols were alkylated with 3-bromo-1,1,1-trifluoroacetone to attach a trifluoroacetyl group at the mutation site. (19)F NMR spectra of 5-coordinate, NO bound S58C/H93G and L149C/H93G double mutants depict peaks with line widths of 100 and 23 Hz, respectively. As fluorine peaks broaden with increasing proximity to paramagnetic centers, such as 5-coordinate Fe--NO, the (19)F NMR data are consistent with NO binding in the distal heme pocket of H93G, even in the absence of a sixth axial ligand. Additionally, (19)F NMR spectra are reported for deoxy, oxy, CO, met CN, and met H(2)O forms of the labeled cysteine mutants. These results demonstrate that the fluorine probes are sensitive to subtle conformational changes in the protein structure due to ligation and oxidation state changes of the heme iron in Mb.  相似文献   

19.
X-ray crystal structure of canine myeloperoxidase at 3 A resolution.   总被引:7,自引:0,他引:7  
The three-dimensional structure of the enzyme myeloperoxidase has been determined by X-ray crystallography to 3 A resolution. Two heavy atom derivatives were used to phase an initial multiple isomorphous replacement map that was subsequently improved by solvent flattening and non-crystallographic symmetry averaging. Crystallographic refinement gave a final model with an R-factor of 0.257. The root-mean-square deviations from ideality for bond lengths and angles were 0.011 A and 3.8 degrees. Two, apparently identical, halves of the molecule are related by local dyad and covalently linked by a single disulfide bridge. Each half-molecule consists of two polypeptide chains of 108 and 466 amino acid residues, a heme prosthetic group, a bound calcium ion and at least three sites of asparagine-linked glycosylation. There are six additional intra-chain disulfide bonds, five in the large polypeptide and one in the small. A central core region that includes the heme binding site is composed of five alpha-helices. Regions of the larger polypeptide surrounding this core are organized into locally folded domains in which the secondary structure is predominantly alpha-helical with very little organized beta-sheet. A proximal ligand to the heme iron atom has been identified as histidine 336, which is in turn hydrogen-bonded to asparagine 421. On the distal side of the heme, histidine 95 and arginine 239 are likely to participate directly in the catalytic mechanism, in a manner analogous to the distal histidine and arginine of the non-homologous enzyme cytochrome c peroxidase. The site of the covalent linkage to the heme has been tentatively identified as glutamate 242, although the chemical nature of the link remains uncertain. The calcium binding site has been located in a loop comprising residues 168 to 174 together with aspartate 96. Myeloperoxidase is a member of a family of homologous mammalian peroxidases that includes thyroid peroxidase, eosinophil peroxidase and lactoperoxidase. The heme environment, defined by our model for myeloperoxidase, appears to be highly conserved in these four mammalian peroxidases. Furthermore, the conservation of all 12 cysteine residues involved in the six intra-chain disulfide bonds and the calcium binding loop suggests that the three-dimensional structures of members of this gene family are likely to be quite similar.  相似文献   

20.
In the preceding paper in this issue [Ost, T. W. B., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 13421-13429], we have established that the primary role of the phylogenetically conserved phenylalanine in flavocytochrome P450 BM3 (F393) is to control the thermodynamic properties of the heme iron, so as to optimize electron-transfer both to the iron (from the flavin redox partner) and onto molecular oxygen. In this paper, we report a detailed study of the F393H mutant enzyme, designed to probe the structural, spectroscopic, and metabolic profile of the enzyme in an attempt to identify the factors responsible for causing the changes. The heme domain structure of the F393H mutant has been solved to 2.0 A resolution and demonstrates that the histidine replaces the phenylalanine in almost exactly the same conformation. A solvent water molecule is hydrogen bonded to the histidine, but there appears to be little other gross alteration in the environment of the heme. The F393H mutant displays an identical ferric EPR spectrum to wild-type, implying that the degree of splitting of the iron d orbitals is unaffected by the substitution, however, the overall energy of the d-orbitals have changed relative to each other. Magnetic CD studies show that the near-IR transition, diagnostic of heme ligation state, is red-shifted by 40 nm in F393H relative to wild-type P450 BM3, probably reflecting alteration in the strength of the iron-cysteinate bond. Studies of the catalytic turnover of fatty acid (myristate) confirms NADPH oxidation is tightly coupled to fatty acid oxidation in F393H, with a product profile very similar to wild-type. The results indicate that gross conformational changes do not account for the perturbations in the electronic features of the P450 BM3 heme system and that the structural environment on the proximal side of the P450 heme must be conformationally conserved in order to optimize catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号