首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A group of cDNA clones encoding the beta-subunit of bovine rod photoreceptor cGMP phosphodiesterase were isolated for structural analysis. The encoded polypeptide has 853 residues with a calculated molecular mass of 98 kDa. The beta-subunit is 72% identical to the rod cGMP phosphodiesterase alpha-subunit. Like the alpha-subunit and the cone alpha'-subunit, the beta-subunit belongs to the family of phosphodiesterase genes. The beta- and alpha-subunits are more similar to each other than either is to the cone alpha'-subunit, suggesting either that the beta- and alpha-subunits diverged more recently or that their divergence was restrained by the rod functional environment.  相似文献   

2.
We have characterized overlapping cDNA clones encoding cGMP phosphodiesterase (PDE) alpha- and beta-subunits of mouse retinal rod photoreceptors. The open reading frames predict an alpha-subunit of 100 kDa (856 residues), and a beta-subunit of 99 kDa (853 residues). Sequence analysis of two of twelve beta-subunit clones predicts the presence in the retina of an additional PDE, termed beta', which is generated by alternative splicing of the beta-subunit gene. beta' differs from beta only at the C-terminus being 55 residues shorter and lacking the Caax motif found at the C-termini of both the alpha- and beta-subunits. A 300 residue segment thought to contain the active site is present in the C-terminal half of alpha, beta and beta'.  相似文献   

3.
cDNA clones encoding the beta-subunit of the photoreceptor cGMP phosphodiesterase-(PDE) were isolated from a human retinal library. The encoded polypeptide has 854 amino acid residues with calculated molecular mass of 98416 Da. Alignment of the deduced amino acid sequence with the previously analysed alpha-, beta- and alpha'-subunits of the bovine and mouse PDEs demonstrates highly significant similarities. We have also isolated, from a genomic library, two overlapping recombinant lambda phage clones containing 26 kb of the human PDE beta-subunit gene. The cloning of the human gene and the knowledge of its genomic organization will allow the rapid assessment of the role of this gene in the causation of human retinopathies.  相似文献   

4.
The gene encoding the beta-subunit of rod photoreceptor cGMP phosphodiesterase (gene symbol PDEB, homolog of the mouse rd gene) is mapped to human chromosome 4 using somatic cell hybrids and further localized to the chromosome band 4p16 using in situ hybridization. A mutation in the mouse gene underlies the recessive trait of retinal degeneration in the rd mouse. Thus, the human homolog is a candidate for lesions causing retinal degeneration.  相似文献   

5.
The retinal degeneration mouse (gene symbol, rd) is an animal model for certain forms of human hereditary retinopathies. Recent findings of a nonsense mutation in the rd mouse PDE beta-subunit gene (Pdeb) prompted us to investigate the chromosome locations of the mouse and human genes. We have utilized backcross analysis in mice to verify and define more precisely the location of the Pdeb locus 6.1 +/- 2.3 cM distal of Mgsa on mouse chromosome 5. We have determined that the human gene (PDEB) maps to 4p16.3, very close to the Huntington disease (HD) region. Analysis of the comparative map for mice and humans shows that the mouse homologue of the HD gene will reside on chromosome 5. Linkage of the mouse Pdeb locus with other homologues in the human 4p16.3 region is maintained but gene order is not, suggesting at least three possible sites for the corresponding mouse HD gene.  相似文献   

6.
7.
The effects of fluoride on ROS phosphodiesterase and G-protein have been studied using membrane-free extracts. When G-protein was present NaF, at millimolar concentrations, stimulated PDE activity however, in a G-protein free extract, cGMP hydrolysis was inhibited by high fluoride concentrations. Fluoride was also found to profoundly inhibit the ability of G-protein to bind a GTP analogue, GTP gamma S, both in the presence and absence of rhodopsin. Aluminium greatly modified these effects of fluoride on PDE and G-protein. The possibility that fluoride activates PDE through its effect on G-protein is discussed.  相似文献   

8.
Post-translational modifications of GTPases from the Ras superfamily enable them to associate with membrane compartments where they exert their biological activities. However, no protein acting like Rho and Rab dissociation inhibitor (GDI) that regulate the membrane association of Rho and Rab GTPases has been described for Ras and closely related proteins. We report here that the delta subunit of retinal rod phosphodiesterase (PDEdelta) is able to interact with prenylated Ras and Rap proteins, and to solubilize them from membranes, independently of their nucleotide-bound (GDP or GTP) state. We show that PDEdelta exhibits striking structural similarities with RhoGDI, namely conservation of the Ig-like fold and presence of a series of hydrophobic residues which could act as in RhoGDI to sequester the prenyl group of its target proteins, thereby providing structural support for the biochemical activity of PDEdelta. We observe that the overexpression of PDEdelta interferes with Ras trafficking and propose that it may play a role in the process that delivers prenylated proteins from endomembranes, once they have undergone proteolysis and carboxymethylation, to the structures that ensure trafficking to their respective resident compartments.  相似文献   

9.
Primary structure of beta-subunit of the cyclic GMP phosphodiesterase has been determined by the parallel analysis of the protein amino acid sequence and the corresponding cDNA nucleotide sequence. The beta-subunit contains 852 amino acid residues, its molecular mass is 98291 Da. A significant homology is found between beta- and alpha-subunit of the cGMP phosphodiesterase.  相似文献   

10.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

11.
We investigated the specificity of CAAX box-related isoprenylation of rod photoreceptor cGMP phosphodiesterase (PDE) subunits expressed in bacteria and the consequences of this modification on rod disk membrane association. Full-length cDNA sequences of the alpha and beta subunits of mouse PDE, inserted into bacterial pET expression vectors, were overexpressed as fusion proteins containing 28 (bMP-alpha) and 26 (bMP-beta) additional amino acid residues at their N termini. Both fusion proteins were overexpressed and stored in inclusion bodies. Purified bMP-alpha and bMP-beta were recognized by bovine PDE-specific polyclonal antibodies, but did not associate with depleted rod disk membranes and were catalytically inactive. Using bovine brain or retina extracts as sources of protein prenyltransferases and tritiated farnesyl- or geranylgeranylpyrophosphate as donors, bMP-alpha (CAAX sequence CCIQ) was exclusively farnesylated, and bMP-beta (CAAX sequence CCIL) was exclusively geranylgeranylated. After isoprenylation, bMP-alpha and bMP-beta each associated with rod photoreceptor outer segment disk membranes under isotonic, but not under hypotonic, conditions. The results indicate that isoprenylated bMP-alpha and bMP-beta each interact independently with membranes and that isoprenylation is the key modification that facilitates membrane association.  相似文献   

12.
13.
N Tuteja  D B Farber 《FEBS letters》1988,232(1):182-186
The cDNA nucleotide and corresponding amino acid sequences of the gamma-subunit of cyclic-GMP phosphodiesterase (cGMP-PDE gamma) from mouse retina have been determined. The cDNA translated region was found to be 91.5% homologous to the cDNA coding region for the enzyme from bovine retina [(1986) FEBS Lett. 204, 288-292]. On Northern blots of normal mouse retinal RNAs this cDNA hybridized the cGMP-PDE gamma mRNA which is 900 bp long. The mouse gamma-subunit contains 87 amino acid residues which share 97.7% homology with the bovine polypeptide [(1986) FEBS Lett. 204, 288-292]. Only two amino acids have been changed, Ala 8 to Gly and Met 17 to Ile.  相似文献   

14.
A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome.  相似文献   

15.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

16.
R L Brown 《Biochemistry》1992,31(25):5918-5925
In the dark, the activity of the cGMP phosphodiesterase (PDE) of retinal rod outer segments is held in check by its two inhibitory gamma subunits. Following illumination, gamma is rapidly removed from its inhibitory site by transducin, the G-protein of the visual system. In order to probe the functional roles of specific regions in the PDE gamma primary sequence, 10 variants of PDE gamma have been produced by site-specific mutagenesis and expression in bacteria and their properties compared to those of protein containing the wild-type bovine PDE gamma amino acid sequence. Three questions were asked about each mutant: What is its affinity for the alpha beta catalytic subunit of PDE? Does it inhibit catalytic activity? If so, can transducin relieve this inhibition? Binding to PDE alpha beta was determined directly using fluorescein-labeled gamma by measuring the increase in emission anisotropy that occurs when gamma binds to alpha beta. Inhibition of PDE alpha beta was measured by reconstitution of the gamma variants with gamma-free PDE generated by limited digestion with trypsin or endoproteinase Arg-C. Unlike trypsin, the latter enzyme did not remove PDE's ability to bind membranes and be activated by transducin, so that transducin activation of PDE containing specific gamma variants could be assayed directly. The results indicate that mutations in many regions of gamma affect its binding to alpha beta. A mutant missing the last five carboxy-terminal residues (83-87) was totally lacking in inhibitory activity. However, it still bound to PDE alpha beta tightly, although with a 100-fold lower dissociation constant (approximately 5 nM) than that of wild-type gamma (approximately 50 pM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Our previous study has shown that P gamma, the regulatory subunit of cGMP phosphodiesterase (PDE), is ADP-ribosylated by endogenous ADP-ribosyltransferase when P gamma is free or complexed with the catalytic subunits of PDE in amphibian rod photoreceptor membranes. The P gamma domain containing ADP-ribosylated arginines was shown to be involved in its interaction with T alpha, a key interaction for PDE activation. In this study, we describe a possible function of the P gamma ADP-ribosylation in the GTP/T alpha-dependent PDE activation. When rod membranes were preincubated with or without NAD and washed with a buffer containing GTP, the PDE activity of NAD-preincubated membranes was increased by the GTP-washing only to approximately 50% of that of membranes preincubated without NAD. The P gamma release by the GTP-washing from these NAD-preincubated membranes was also suppressed to approximately 50% of that preincubated without NAD. Taking into consideration that approximately 50% of P gamma is ADP-ribosylated under these conditions, these observations suggest that the ADP-ribosylated P gamma cannot interact with GTP/T alpha. We have also shown that a soluble fraction of ROS contains an enzyme(s) to release the radioactivity of [32P]ADP-ribosylated P gamma in concentration- and time-dependent manners, suggesting that the P gamma ADP-ribosylation is reversible. Rod ADP-ribosyltransferase solubilized from membranes by phosphatidylinositol-specific phospholipase C was separated into two fractions by ion-exchange columns. Biochemical characterization of these two fractions, including measurement of the Km for NAD and P gamma, estimation of their molecular masses, ADP-ribosylation of P gamma arginine mutants, effects of ADP-ribosyltransferase inhibitors on the P gamma ADP-ribosylation, and effects of salts and pH on the P gamma ADP-ribosylation, indicates that rod ADP-ribosyltransferase contains two isozymes, and that these two isozymes have similar properties for the P gamma ADP-ribosylation. Our observations strongly suggest that the negative regulation of PDE through the reversible P gamma ADP-ribosylation may function in the phototransduction mechanism.  相似文献   

19.
cGMP phosphodiesterase in rod and cone outer segments of the retina   总被引:11,自引:0,他引:11  
Immunochemical, chromatographic, and sodium dodecyl sulfate gel electrophoresis studies suggest that immunologically related but distinct cyclic GMP phosphodiesterases are present in rod and cone outer segments of the retina. Immunocytochemical studies demonstrated that one monoclonal antibody (ROS-1) recognized a determinant present in both rod and cone outer segments, while another monoclonal antibody (ROS-2) only recognized rod outer segments. At least two peaks of phosphodiesterase activity could be separated by high-performance anion-exchange chromatography of retinal extracts. Both peaks were recognized by ROS-1. None of the first peak and only 80% of the second broad peak of activity were recognized by ROS-2. High-performance liquid chromatography profiles from human fovea and several other types of cone-enriched retina showed that most of the activity was contained in the first peak, suggesting that this activity was derived from cone outer segments. Conversely, the phosphodiesterase in rod-enriched preparations migrated predominately in the second peak. Sodium dodecyl sulfate-gel electrophoresis indicated that this first peak contained a single large immunoreactive polypeptide (alpha') that migrated with the same mobility as a phosphorylase b standard and was distinct from the more rapidly migrating large immunoreactive polypeptides (alpha and beta) present in a broad second peak. The second peak could be further separated into a first part that contained a doublet of two immunoreactive polypeptides (alpha and beta) that migrated faster than phosphorylase b and a later part that contained only the most rapidly migrating polypeptide (beta). All of the peaks could be activated by histone or transducin:GTP, implying that all contained a small 11-kDa inhibitory subunit (gamma) of the enzyme. Since the larger (alpha') and smaller (beta) immunoreactive polypeptides could be completely separated from the alpha polypeptide and from each other, yet still retain the ability to be activated by histone or transducin, the data suggest that only a single species of polypeptide-inhibitor complex (e.g. alpha' gamma, alpha gamma, or beta gamma) was required for histone or transducin:GTP activation.  相似文献   

20.
Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.e., its isoforms, its phosphorylation mode and its interaction with microtubules, and by comparing them with those of brain tau. We find that ROS contains at least four isoforms: three are identical to those in brain and one is unique in ROS. All ROS isoforms, like brain isoforms, are modified with multiple phosphate molecules; however, ROS isoforms show their own specific phosphorylation pattern, and these phosphorylation patterns appear not to be identical to those of brain tau. Interestingly, some ROS isoforms, under the normal conditions, are phosphorylated at the sites identical to those in Alzheimer's patient isoforms. Surprisingly, a large portion of ROS isoforms tightly associates with a membranous component(s) other than microtubules, and this association is independent of their phosphorylation states. These observations strongly suggest that tau plays various roles in ROS and that some of these functions may not be comparable to those of brain tau. We believe that knowledge about tau in the entire retinal network and/or its individual cells are also essential for elucidation of tau-mediated retinal diseases, if any.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号