首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Nitrogenase is composed of two separately purified proteins called the Fe protein and the MoFe protein. In Azotobacter vinelandii the genes encoding these structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). The MoFe protein contains an ironmolybdenum cofactor (FeMo cofactor) whose biosynthesis involves the participation of at least five gene products, nifQ, nifB, nifN, nifE, and nifV. In this study an A. vinelandii mutant strain, which contains a defined deletion within the nifH (Fe protein) gene, was isolated and studied. This mutant is still able to accumulate significant amounts of MoFe protein subunits. However, extracts of this nifH deletion strain have only very low levels of MoFe protein acetylene reduction activity. Fully active MoFe protein can be reconstituted by simply adding isolated FeMo cofactor to the extracts. Fe protein is not necessary to stabilize or insert this preformed FeMo cofactor into the FeMo cofactor-deficient MoFe protein synthesized by the nifH deletion strain. Extracts of the nifH deletion strain can carry out molybdate and ATP-dependent in vitro FeMo cofactor biosynthesis provided Fe protein is added, demonstrating that they contain the products encoded by the FeMo cofactor biosynthetic genes. These data demonstrate that the Fe protein is physically required for the biosynthesis of FeMo cofactor in A. vinelandii.  相似文献   

2.
3.
We have examined three strains of Azotobacter vinelandii, which contain defined deletions within the nifH, nifB, or nifE genes. All three strains accumulate inactive FeMo cofactor-deficient forms of the MoFe protein of nitrogenase. These forms can be activated in vitro by addition of isolated FeMo cofactor in N-methylformamide. Although the phenotypes of these strains are superficially the same, our characterizations demonstrate that the FeMo cofactor-deficient MoFe protein synthesized by the delta nifH strain is quite different from that synthesized by either the delta nifB or delta nifE strains. These differences include the following: 1) the activation of the delta nifH protein requires MgATP, whereas the activation of the delta nifB and delta nifE proteins does not; 2) the delta nifH extracts can be activated with FeMo cofactor to wild-type levels of activity, whereas delta nifB and delta nifE extracts cannot; 3) the delta nifH protein is markedly less heat stable than the delta nifB and delta nifE proteins; and 4) the migration of the delta nifH protein on native gels is very different when compared with delta nifB and delta nifE, which look like each other. These data can be explained if the nifB and nifE gene products are only involved in FeMo cofactor biosynthesis, whereas the nifH gene product is involved in both the initial synthesis of FeMo cofactor and in the insertion of preformed FeMo cofactor into the MoFe protein. A model is presented that suggests that the FeMo cofactor-deficient MoFe protein synthesized by the delta nifH strain is the one that normally participates in MoFe protein assembly in wild-type cells.  相似文献   

4.
Nitrogenase is composed of two component proteins, the iron protein (Fe protein) and the molybdenum-iron protein (MoFe protein). The Fe protein is a Mr 60,000 dimer of identical subunits with one bridging [4Fe-4S] center. It serves as a one-electron donor to the MoFe protein in a reaction that is coupled to MgATP hydrolysis. The MoFe protein is an alpha 2 beta 2 tetramer of Mr 220,000 which contains four [4Fe-4S] clusters and two iron-molybdenum cofactor (FeMo cofactor) centers. The exact structure of FeMo cofactor is not known, but it is believed to form the active site of the enzyme. Using specifically constructed deletion mutants of Azotobacter vinelandii, we have previously shown that the Fe protein, but not the MoFe protein, is required for FeMo cofactor biosynthesis (Robinson, A. C., Dean, D. R., and Burgess, B. K. (1987) J. Biol. Chem. 262, 14327-14332). During the partial purification of a FeMo cofactor-deficient form of the MoFe protein from one of these mutants (DJ54, delta nifH), we have discovered that, in addition to biosynthesis, the Fe protein-MgATP complex is involved in FeMo cofactor insertion into the MoFe protein. This insertion process is also sensitive to a number of other parameters (e.g. salt, pH, temperature, protein concentration). Based on our experimental data, we present a model for how this insertion reaction might take place, in which the Fe protein-MgATP complex binds the FeMo cofactor-deficient form of the MoFe protein and stabilizes a specific conformation of the MoFe protein that has the FeMo cofactor binding site exposed and available for coordination by preformed FeMo cofactor.  相似文献   

5.
The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle.  相似文献   

6.
7.
We have collected synchrotron x-ray solution scattering data for the MoFe protein of Klebsiella pneumoniae nitrogenase and show that the molecular conformation of the protein that contains only one molybdenum per alpha(2)beta(2) tetramer is different from that of the protein that has full occupancy i.e. two molybdenums per molecule. This structural finding is consistent with the existence of MoFe protein molecules that contain only one FeMo cofactor site occupied and provides a rationale for the 50% loss of the specific activity of such preparations. A stable inactive transition state complex has been shown to form in the presence of MgADP and AlF(4)(-). Gel filtration chromatography data show that the MoFe protein lacking a full complement of the cofactor forms initially a 1:1 complex before forming a low affinity 1:2 complex. A similar behavior is found for the MoFe protein with both cofactors occupied, but the high affinity 1:2 complex is formed at a lower ratio of Fe protein/MoFe protein. The 1:1 complex, MoFe protein-Fe protein x (ADP x AlF(4)(-))(2), formed with MoFe protein that lacks one of the cofactors, is stable. X-ray scattering studies of this complex have enabled us to obtain its low resolution structure at approximately 20-A resolution, which confirms the gel filtration finding that only one molecule of the Fe protein binds the MoFe protein. By comparison with the low resolution structure of purified MoFe protein that contains only one molybdenum per tetramer, we deduce that the Fe protein interacts with the FeMo cofactor-binding alpha-subunit of the MoFe protein. This observation demonstrates that the conformation of the alpha-subunit or the alpha beta subunit pair that lacks the FeMo cofactor is altered and that the change is recognized by the Fe protein. The structure of the 1:1 complex reveals a similar change in the conformation of the Fe protein as has been observed in the low resolution scattering mask and the high resolution crystallographic study of the 1:2 complex where both cofactors are occupied and with the Fe protein bound to both subunits. This extensive conformational change observed for the Fe protein in the complexes is, however, not observed when MgATP or MgADP binds to the isolated Fe protein. Thus, the large scale conformational change of the Fe protein is associated with the complex formation of the two proteins.  相似文献   

8.
Hu Y  Fay AW  Lee CC  Yoshizawa J  Ribbe MW 《Biochemistry》2008,47(13):3973-3981
Assembly of nitrogenase MoFe protein is arguably one of the most complex processes in the field of bioinorganic chemistry, requiring, at least, the participation of nifS, nifU, nifB, nifE, nifN, nifV, nifQ, nifZ, nifH, nifD, and nifK gene products. Previous genetic studies have identified factors involved in MoFe protein assembly; however, the exact functions of these factors and the precise sequence of events during the process have remained unclear until the recent characterization of a number of assembly-related intermediates that provided significant insights into this biosynthetic "black box". This review summarizes the recent advances in elucidation of the mechanism of FeMoco biosynthesis in four aspects: (1) the ex situ assembly of FeMoco on NifEN, (2) the incorporation of FeMoco into MoFe protein, (3) the in situ assembly of P-cluster on MoFe protein, and (4) the stepwise assembly of MoFe protein.  相似文献   

9.
Two hundred and thirty-five Nif- strains of Klebsiella pneumoniae were characterized by two-dimensional polyacrylamide gel electrophoresis. Forty-two of these strains were tested further by in vitro acetylene reduction assays. By these techniques, nine nif-coded polypeptides were identified, and eight of these were assigned to specific nif genes. Nitrogenase component I required nifK and nifD, which coded for the beta and alpha subunits, and nifB, -E, and -N were required for the iron-molybdenum cofactor, which is a part of the active site of nitrogenase. nifH coded for the structural protein of component II, and nifM and nifS products seemed to be necessary for the synthesis of an active component II. There were two genes, nifF and nifJ, that were required for N2 fixation in vivo but not for N2 fixation in vitro. There were at least two cases (nifE and nifN, nifK and nifD) of two proteins that seemed to require each other for stability in vivo. Regulation of N2 fixation is apparently complex, and this is reflected by the assignment of regulatory functions to the gene products of nifA, nifL, nifK, nifD, nifH, and NIFJ.  相似文献   

10.
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.   总被引:2,自引:0,他引:2  
In all diazotrophic micro-organisms investigated so far, mutations in nifE, one of the genes involved in the biosynthesis of the FeMo cofactor (FeMoco), resulted in the accumulation of cofactorless inactive dinitrogenase. In this study, we have found that strains of the phototrophic non-sulfur purple bacterium Rhodobacter capsulatus with mutations in nifE, as well as in the operon harbouring the nifE gene, were capable of reducing acetylene and growing diazotrophically, although at distinctly lower rates than the wild-type strain. The diminished rates of substrate reduction were found to correlate with the decreased amounts of the dinitrogenase component (MoFe protein) expressed in R. capsulatus. The in vivo activity, as measured by the routine acetylene-reduction assay, was strictly Mo-dependent. Maximal activity was achieved under diazotrophic growth conditions and by supplementing the growth medium with molybdate (final concentration 20-50 microM). Moreover, in these strains a high proportion of ethane was produced from acetylene ( approximately 10% of ethylene) in vivo. However, in in vitro measurements with cell-free extracts as well as purified dinitrogenase, ethane production was always found to be less than 1%. The isolation and partial purification of the MoFe protein from the nifE mutant strain by Q-Sepharose chromatography and subsequent analysis by EPR spectroscopy and inductively coupled plasma MS revealed that FeMoco is actually incorporated into the protein (1.7 molecules of FeMoco per tetramer). On the basis of the results presented here, the role of NifNE in the biosynthetic pathway of the FeMoco demands reconsideration. It is shown for the first time that NifNE is not essential for biosynthesis of the cofactor, although its presence guarantees formation of a higher content of intact FeMoco-containing MoFe protein molecules. The implications of our findings for the biosynthesis of the FeMoco will be discussed.  相似文献   

11.
The Fe protein of nitrogenase has three separate functions. Much is known about the regions of the protein that are critical to its function as an electron donor to the MoFe protein, but almost nothing is known about the regions of the protein that are critical to its functions in either FeMo cofactor biosynthesis or FeMo cofactor insertion. Using computer modeling and information obtained from Fe protein mutants that were made decades ago by chemical mutagenesis, we targeted a surface residue Glu(146) as potentially being involved in FeMo cofactor biosynthesis and/or insertion. The Azotobacter vinelandii strain expressing an E146D Fe protein variant grows at approximately 50% of the wild type rate. The purified E146D Fe protein is fully functional as an electron donor to the MoFe protein, but the MoFe protein synthesized by that strain is partially ( approximately 50%) FeMo cofactor-deficient. The E146D Fe protein is fully functional in an in vitro FeMo cofactor biosynthesis assay, and the strain expressing this protein accumulates "free" FeMo cofactor. Assays that compared the ability of wild type and E146D Fe proteins to participate in FeMo cofactor insertion demonstrate, however, that the mutant is severely altered in this last reaction. This is the first known mutation that only influences the insertion reaction.  相似文献   

12.
The Azotobacter vinelandii genes encoding the nitrogenase structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). In this study various A. vinelandii mutant strains which contain defined deletions within the nitrogenase structural genes were isolated and studied. Mutants deleted for the nifD or nifK genes were still able to accumulate significant amounts of the unaltered MoFe protein subunit as well as active Fe protein. Extracts of such nifD or nifK deletion strains had no MoFe protein activity. However, active MoFe protein could be reconstituted by mixing extracts of the mutant strains. These results establish an approach for the purification of the individual MoFe protein subunits. Mutants lacking either or both of the MoFe protein subunits were still able to synthesize the iron-molybdenum cofactor (FeMo-cofactor), indicating that in A. vinelandii the FeMo-cofactor is preassembled and inserted into the MoFe protein. In contrast, a mutant strain lacking both the Fe protein and the MoFe protein failed to accumulate any detectable FeMo-cofactor. The further utility of specifically altered A. vinelandii strains for the study of the assembly, structure, and reactivity of nitrogenase is discussed.  相似文献   

13.
The His-tag MoFe protein expressed by the nifH deletion strain Azotobacter vinelandii DJ1165 (Delta(nifH) MoFe protein) was purified in large quantity. The alpha(2)beta(2) tetrameric Delta(nifH) MoFe protein is FeMoco-deficient based on metal analysis and the absence of the S = 3/2 EPR signal, which arises from the FeMo cofactor center in wild-type MoFe protein. The Delta(nifH) MoFe protein contains 18.6 mol Fe/mol and, upon reduction with dithionite, exhibits an unusually strong S = 1/2 EPR signal in the g approximately 2 region. The indigo disulfonate-oxidized Delta(nifH) MoFe protein does not show features of the P(2+) state of the P-cluster of the Delta(nifB) MoFe protein. The oxidized Delta(nifH) MoFe protein is able to form a specific complex with the Fe protein containing the [4Fe-4S](1+) cluster and facilitates the hydrolysis of MgATP within this complex. However, it is not able to accept electrons from the [4Fe-4S](1+) cluster of the Fe protein. Furthermore, the dithionite-reduced Delta(nifH) MoFe can be further reduced by Ti(III) citrate, which is quite unexpected. These unusual catalytic and spectroscopic properties might indicate the presence of a P-cluster precursor or a P-cluster trapped in an unusual conformation or oxidation state.  相似文献   

14.
Isolation and characterization of an acetylene-resistant nitrogenase   总被引:2,自引:0,他引:2  
A genetic strategy was developed for the isolation of a mutant strain of Azotobacter vinelandii that exhibits in vivo nitrogenase activity resistant to inhibition by acetylene. Examination of the kinetic features of the altered nitrogenase MoFe protein produced by this strain, which has serine substituted for the alpha-subunit Gly(69) residue, is consistent with other studies that indicate the MoFe protein normally contains at least two acetylene binding/reduction sites. The first of these is a high affinity site and is the one primarily accessed during typical acetylene reduction assays. Results of the present work indicate that this acetylene binding/reduction site is not directly relevant to the mechanism of nitrogen reduction because it can be eliminated or severely altered without significantly affecting nitrogen reduction. Elimination of this site also results in the manifestation of a low affinity acetylene-binding site to which both acetylene and nitrogen are able to bind with approximately the same affinity. In contrast to the normal enzyme, nitrogen and acetylene binding to the altered MoFe protein are mutually competitive. The location of the alpha-Ser(69) substitution is interpreted to indicate that the 4Fe-4S face of the FeMo cofactor capped by the alpha-subunit Val(70) residue is the most likely region within FeMo cofactor to which acetylene binds with high affinity.  相似文献   

15.
S Z Wang  J S Chen  J L Johnson 《Biochemistry》1988,27(8):2800-2810
Nitrogenase is composed of two separately purified proteins, a molybdenum-iron (MoFe) protein and an iron (Fe) protein. Structural genes (nifD and nifK) encoding alpha and beta subunits of the MoFe protein of Clostridium pasteurianum (Cp) have been cloned and sequenced. The deduced amino acid sequences were analyzed for structures that could be related to the unique properties of the Cp protein, particularly its low capacity to form an active enzyme with a heterologous Fe protein. Cp nifK is located immediately downstream from Cp nifD, with the start codon of nifK overlapping by one base with the stop codon of nifD. An open reading frame following nifK was identified as nifE. The amino acid sequence deduced from nifK encompasses the partial amino acid sequences previously reported from the isolated beta subunit. Cp nifK encodes a polypeptide of 458 amino acid residues (Mr 50 115) whose amino-terminal region is about 50 residues shorter than the otherwise conserved corresponding polypeptides from four other organisms. In contrast, Cp alpha subunit (nifD product) contains an additional stretch of 50 amino acid residues in the 380-430 region, which is unique to the Cp protein. It therefore appears that the combined size of the alpha and beta subunits could be important to nitrogenase function. An analysis of the predicted secondary structure from the amino acid sequence of each subunit from three species (C. pasteurianum, Azotobacter vinelandii, and Rhizobium japonicum) further revealed structural features, including regions adjacent to some of the conserved cysteine residues, differentiating the Cp MoFe protein from others. These different regions may be further tested for correlation with distinct properties of Cp nitrogenase.  相似文献   

16.
The final step of FeMo cofactor (FeMoco) assembly involves the insertion of FeMoco into its binding site in the molybdenum-iron (MoFe) protein of nitrogenase. Here we examine the role of His alpha274 and His alpha451 of Azotobacter vinelandii MoFe protein in this process. Our results from combined metal, activity, EPR, stability and insertion analyses show that mutations of His alpha274 and/or His alpha451, two of the histidines that belong to a so-called His triad, to small uncharged Ala specifically reduce the accumulation of FeMoco in MoFe protein. This observation indicates that the enrichment of histidines at the His triad is important for FeMoco insertion and that the His triad potentially serves as an intermediate docking point for FeMoco through transitory ligand coordination and/or electrostatic interaction.  相似文献   

17.
The MoFe protein of the complex metalloenzyme nitrogenase folds as a heterotetramer containing two copies each of the homologous alpha and beta subunits, encoded by the nifD and the nifK genes respectively. Recently, the functional expression of a fusion NifD-K protein of nitrogenase was demonstrated in Azotobacter vinelandii, strongly implying that the MoFe protein is flexible as it could accommodate major structural changes, yet remain functional [M.H. Suh, L. Pulakat, N. Gavini, J. Biol. Chem. 278 (2003) 5353-5360]. This finding led us to further explore the type of interaction between the fused MoFe protein units. We aimed to determine whether an interaction exists between the two fusion MoFe proteins to form a homodimer that is equivalent to native heterotetrameric MoFe protein. Using the Bacteriomatch Two-Hybrid System, translationally fused constructs of NifD-K (fusion) with the full-length lambdaCI of the pBT bait vector and also NifD-K (fusion) with the N-terminal alpha-RNAP of the pTRG target vector were made. To compare the extent of interaction between the fused NifD-K proteins to that of the beta-beta interactions in the native MoFe protein, we proceeded to generate translationally fused constructs of NifK with the alpha-RNAP of the pTRG vector and lambdaCI protein of the pBT vector. The strength of the interaction between the proteins in study was determined by measuring the beta-galactosidase activity and extent of ampicillin resistance of the colonies expressing these proteins. This analysis demonstrated that direct protein-protein interaction exists between NifD-K fusion proteins, suggesting that they exist as homodimers. As the interaction takes place at the beta-interfaces of the NifD-K fusion proteins, we propose that these homodimers of NifD-K fusion protein may function in a similar manner as that of the heterotetrameric native MoFe protein. The observation that the extent of protein-protein interaction between the beta-subunits of the native MoFe protein in BacterioMatch Two-Hybrid System is comparable to the extent of protein-protein interaction observed between the NifD-K fusion proteins in the same system further supports this idea.  相似文献   

18.
An essential gene for symbiotic nitrogen fixation (fixF) is located near the common nodulation region of Rhizobium meliloti. A DNA fragment carrying fixF was characterized by hybridization with Klebsiella pneumoniae nif DNA and by nucleotide sequence analysis. The fixF gene was found to be related to K. pneumoniae nifN and was therefore renamed as the R. meliloti nifN gene. Upstream of the nifN coding region a second open reading frame was identified coding for a putative polypeptide of 110 amino acids (ORF110). By fragment-specific Tn5 mutagenesis it was shown that the nifN gene and ORF110 form an operon. The control region of this operon contains a nif promoter and also the putative nifA-binding sequence. For the deduced amino acid sequence of the nifN gene product a striking homology to the R. meliloti nifK protein was found. One cysteine residue and its adjacent amino acid sequence, which are highly conserved in the R. meliloti nifK, R. meliloti nifN, and K. pneumoniae nifN proteins, may play a role in binding the FeMo cofactor.  相似文献   

19.
Strains of Azotobacter vinelandii which contain defined deletions within the nifD and nifK genes which encode, respectively, the alpha and beta subunits of the MoFe protein of nitrogenase were analyzed. When synthesized without its partner, the beta subunit accumulated as a soluble beta 4 tetramer. In contrast, when the alpha subunit was present without its partner, it accumulated primarily as an insoluble aggregate. The solubility of this protein was increased by the presence of a form of the beta subunit which contained a large internal deletion, such that the alpha subunit could participate in the assembly of small amounts of an alpha 2 beta 2 holoprotein. When synthesized alone, the beta subunit was remarkably stable, even when the protein contained a large internal deletion. The alpha subunit, however, was much more rapidly degraded than the beta subunit, both when it was synthesized alone in its native background and when it was synthesized with its beta subunit partner in a foreign background. Antibodies raised against purified alpha 2 beta 2 MoFe protein recognized epitopes only on the nondenatured beta subunit and not on the nondenatured alpha subunit. Our findings that all epitopes for the alpha2beta2 tetramer appeared to be on the beta subunit, that the beta subunit assembled into beta4 tetramers, and that the alpha subunit alone was very insoluble, combined with the previous finding that the Fe protein binds to the beta subunit (A. H. Willing, M. M. Georgiadis, D. C. Rees, and J. B. Howard, J. Biol. Chem. 264:8499-8503, 1989) all suggest that the beta subunit has a more surface location than the alpha subunit in the alpha2beta2 tetramer.  相似文献   

20.
The nifZ gene product (NifZ) of Azotobacter vinelandii has been implicated in MoFe protein maturation. However, its exact function in this process remains largely unknown. Here, we report a detailed biochemical/biophysical characterization of His-tagged MoFe proteins purified from A. vinelandii nifZ and nifZ/nifB deletion strains DJ1182 and YM6A (Delta nifZ and Delta nifZ Delta nifB MoFe proteins, respectively). Our data from EPR, metal, activity, and stability analyses indicate that one alpha beta subunit pair of the Delta nifZ MoFe protein contains a P cluster ([8Fe-7S]) and an iron-molybdenum cofactor (FeMoco) ([Mo-7Fe-9S-X-homocitrate]), whereas the other contains a presumed P cluster precursor, possibly comprising a pair of [4Fe-4S]-like clusters, and a vacant FeMoco site. Likewise, the Delta nifZ Delta nifB MoFe protein has the same composition as the Delta nifZ MoFe protein except for the absence of FeMoco, an effect caused by the deletion of the nifB gene. These results suggest that the MoFe protein is likely assembled stepwise, i.e. one alpha beta subunit pair of the tetrameric MoFe protein is assembled prior to the other, and that NifZ might act as a chaperone in the assembly of the second alpha beta subunit pair by facilitating a conformational rearrangement that is required for the formation of the P cluster through the condensation of two [4Fe-4S]-like clusters. The possibility of NifZ exercising its effect through the Fe protein was ruled out because the Fe proteins from nifZ and nifZ/nifB deletion strains are not defective in their normal functions. However, the detailed mechanism of how NifZ carries out its exact function in MoFe protein maturation awaits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号