首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrosobenzene (NOB) formed acid labile conjugates with reduced glutathione (GSH) and hemoglobin within red cells. In vitro, NOB rapidly reacted with GSH with formation of phenylhydroxylamine (PH), oxidized glutathione (GSSG), and a water-soluble compound identified as glutathionesulfinanilide (GSO-AN). Free aniline (AN), aminophenols and azoxybenzene were not detected. The proportion of PH formed increased with increasing GSH concentration and at higher pH values. Spectroscopic analysis revealed the formation of a labile adduct following a second order reaction (K = 5 x 10(3) M-1 . sec-1 at pH 7.4 and 37 degrees). This reaction was reversible because nearly all NOB could be extracted with ether from the labile intermediate. On the other hand, the labile intermediate was transformed into GSO-AN (with increasing rate at lower pH values) or it was cleaved by GSH with formation of GSSG and PH. Intermediate formation of NOB and thiol radicals was ruled out by analysis of the equilibrium data. A tentative scheme is presented for the proposed reaction mechanism.  相似文献   

2.
R Ahmad  Z Wu  D A Armstrong 《Biochemistry》1983,22(8):1806-1810
The kinetics of reaction of oxidized lumiflavin (F0) with the radicals .CO2(-), CH3CHOH, and (CH3)2COH have been investigated at pH 7 and 24 +/- 1 degree C by the pulse radiolysis technique. The radicals have been shown to react with lumiflavin with second-order rate constants of 36 +/- 4, 26 +/- 3, and 20 +/- 3 in units of 10(8) M-1 s-1, respectively. These rate constants are close to the diffusion limit. The main product in each case was the lumiflavin semiquinone radical FH.. By utilization of long pulses (approximately 100 mus), it was shown that the reaction FH. + .AH(alpha) leads to FH- + A(alpha) + H+ [.AH(alpha) = .CO2(-), CH3CHOH, or (CH3)2COH] proceeded for all three types of .AH(alpha) radical with second-order rate constants of 17 (+4,-3), 9 (+5,-3), and 9 (+4,-3), respectively, in the above units. The beta-carbon radical .CH2CH(OH)CH3 added to .FH, forming an alkylated flavin, while the .CH2CH2OH radical appeared to be capable of addition or hydrogen atom donation to .FH.  相似文献   

3.
Reactions of oxyl radicals with DNA   总被引:28,自引:0,他引:28  
The importance of radical-induced damage to DNA is apparent from the ever-increasing number of publications in this area. This review focuses on the damage caused to DNA by reactive oxygen-centred radicals, however formed. These may be hydroxyl radicals, which arise either from the radiolysis of water by ionizing radiation (γ-rays or X-rays), or from a purely chemical source. Alternatively, metal-bound oxyl radicals (M–O·) are also active intermediates in DNA-cleaving reactions and may be formed from synthetic compounds or from natural products such as bleomycin (BLM). Chemical mechanisms leading to the observed degradation products are covered in detail. The biological effects of some of the DNA base lesions formed are touched upon, concentrating on the molecular mechanisms behind the initial events that lead to mutagenesis.  相似文献   

4.
Radiation-induced reactions of hydrated electrons, formate- and ethanol radicals with ribonuclease were studied by pulse radiolysis and by electrophoresis. Initially formate radicals react rapidly and very specifically with the disulphide bonds of ribonuclease. This reaction leads to aggregation by intermolecular S-S-interchange, the process being more effective at pH 4, since formation and decay of S-S-.-radical anions increases with decreasing pH. With high doses additional unreducible aggregates are formed. Radical formation at the positively charged histidine residues seems to be involved. Hydrated electrons do not react as selectively as the formate radicals, but with several sites in native ribonuclease. Thus with low doses unreducible aggregates are formed. Electrophoresis shows that reaction of the electrons causes fragmentation of the peptide chain, when OH-radicals are scavenged. Very weak transient spectra and very little degradation result on reaction of ethanol radicals with ribonuclease.  相似文献   

5.
6.
Lam LK  Zhang Z  Board PG  Xun L 《Biochemistry》2012,51(25):5014-5021
S-Glutathionyl-hydroquinone reductases (GS-HQRs) are a new class of glutathione transferases, widely present in bacteria, halobacteria, fungi, and plants. They catalyze glutathione (GSH)-dependent reduction of GS-trichloro-p-hydroquinone to trichloro-p-hydroquinone. Since GS-trichloro-p-hydroquinone is uncommon in nature, the extensive presence of GS-HQRs suggests they use common GS-hydroquinones. Here we demonstrate that several benzoquinones spontaneously reacted with GSH to form GS-hydroquinones via Michael addition, and four GS-HQRs from yeast and bacteria reduced the GS-hydroquinones to the corresponding hydroquinones. The spontaneous and enzymatic reactions led to the reduction of benzoquinones to hydroquinones with the concomitant oxidation of GSH to oxidized glutathione (GS-SG). The enzymes did not use GS-benzoquinones or other thiol-hydroquinones, for example, S-cysteinyl-hydroquinone, as substrates. Apparent kinetic parameters showed the enzymes preferred hydrophobic, bulky substrates, such as GS-menadiol. The broad substrate range and their wide distribution suggest two potential physiological roles: channeling GS-hydroquinones back to hydroquinones and reducing benzoquinones via spontaneous formation of GS-hydroquinones and then enzymatic reduction to hydroquinones. The functions are likely important in metabolic pathways with quinone intermediates.  相似文献   

7.
Coenzyme Q, besides its role in electron transfer reactions, may act as a radical scavenger. The effect of oxygen radicals produced by ultrasonic irradiation on the quinone ring was investigated. Aqueous solutions of a Q homologue, completely lacking the side chain, were irradiated and the modifications were spectrophotometrically followed. The experimental results show that both degradation and reduction of the benzoquinone ring took place when the irradiation was performed in water. Data obtained when ultrasonic irradiation was carried out in the presence of OH. scavengers, as formate, organic and inorganic buffers, suggest: a) the responsible species for most the ubiquinol generated by sonication appeared to be the superoxide radical b) addition reactions of OH. radicals with the aromatic ring led probably to the degradation of Coenzyme Q molecules.  相似文献   

8.
Pseudomonas aeruginosa is the most common cause of chronic and recurrent lung infections in patients with cystic fibrosis (CF) whose sputa contain copious quantities of P. aeruginosa toxin, pyocyanin. Pyocyanin triggers tissue damage mainly by its redox cycling and induction of reactive oxygen species (ROS). The reactions between reduced glutathione (GSH) and pyocyanin were observed using absorption spectra from spectrophotometry and the reaction products analysed by nuclear magnetic resonance imaging. Pyocyanin reacted with GSH non-enzymatically at 37 degrees C resulting in the production of red-brown products, spectophotometrically visible as a 480 nm maximum absorption peak after 24 h of incubation. The reaction was concentration-dependent on reduced glutathione but not on pyocyanin. Minimizing the accessibility of oxygen to the reaction decreased its rate. The anti-oxidant enzyme catalase circumvented the reaction. Proton-NMR analysis demonstrated the persistence of the original aromatic ring and the methyl-group of pyocyanin in the red-brown products. Anti-oxidant agents having thiol groups produced similar spectophotometrically visible peaks. The presence of a previously unidentified non-enzymatic GSH-dependent metabolic pathway for pyocyanin has thus been identified. The reaction between pyocyanin and GSH is concentration-, time-, and O(2)-dependent. The formation of H(2)O(2) as an intermediate and the thiol group in GSH seem to be important in this reaction.  相似文献   

9.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

10.
《Inorganica chimica acta》1988,152(3):201-207
The reaction of the monofunctional platinum compound [PtCl(dien)]Cl with the tripeptide glutathione (GSH), oxidized glutathione (GSSG) and S-methyl glutathione (GS-Me) has been investigated by 1H, 13C and 195Pt magnetic resonance spectroscopy and by potentiometric titrations. It appears that platinum binds with a high degree of specificity to the GSH sulfhydryl group. The reaction of platinum with GSH proceeds in two steps. In the first step only one platinum binds to the sulfur atom and, in the second step, another [Pt(dien)]2+ unit binds to [Pt(dien)GS]+ forming an S-bridged dinuclear unit [{Pt(dien)}2GS]3+. The rate of the first binding step is pH-dependent, whereas the rate of the second step is not. At pH < 7 the rate of the first binding step is slow compared to the rate of the second binding step. At pH > 10, on the other hand, the rate of the first binding step is faster than the rate of the second binding step. Consequently, at pH < 7 one can only isolate the [{Pt(dien)}2GS]3+ complex. In the presence of free GSH, at pH > 7, one [Pt(dien)]2+ unit of [{Pt(dien)}2GS]3+ dissociates forming [Pt(dien)GS]+. The mechanism of the pH-dependent rate of the first platinum binding step and the ligand-exchange reaction are discussed. GSSG reacts with [Pt(dien)]2+, also forming the S-bridged dinuclear unit [{Pt(dien)}2GS]3+, probably through a redox disproportionation reaction with a catalytic function of [PtCl(dien)]Cl. GS-Me reacts with [Pt(dien)]2+ forming the S-coordinated [Pt(dien)GS-Me]2+. [Pt(dien)GS-Me]2+ exists as a pair of diastereomers due to different configurations about sulfur. The rate of the inversion of configuration at the coordinated sulfur atom is slow on the NMR time-scale.  相似文献   

11.
It has been found that flavonoids (FL) are able to reduce, add or oxidize alpha-hydroxyethyl radicals (HER). The probability of these processes to occur depends on the structure of the FL under study. Namely, to cause reduction of HER, the presence of hydroxyl groups is necessary, and to effect oxidation or addition of HER, the presence of a carbonyl group at C4 and a C2-C3 double bond in the C ring is required.  相似文献   

12.
Pulse radiolysis of selenium dioxide in aqueous solution has shown the presence of three selenite radicals in acid-base equilibrium within well defined pH ranges: (formula; see text) The selenite radicals react selectively with amino acids, preferentially with the aromatic ones in the order tryptophan greater than tyrosine greater than histidine, independently of the acid-base structure of the radical. Kinetic and spectroscopic data on the reaction of selenite radicals with some proteins and parallel inactivation studies generally reflect knowledge on the amino acid residues mainly involved in the radical attack. The investigations at different pH values on the reactivity of selenite radicals with amino acids and proteins and on the transient spectra of the reaction products exhibit different behaviour for the various acid-base structures of the selenite radicals, reflecting the influence of particular ionizable groups in the reacting molecules and the structure modifications at the level of proteins.  相似文献   

13.
14.
Based on product yield data on radiolysis of hexane, ethanol and 3 M aqueous ethylene glycol solutions, the ability of a number of arylamine, aminophenol and quinonimine derivatives to affect processes involving peroxyl, alkyl or alpha-hydroxyalkyl radicals was assessed. It has been shown that the introduction of a hydroxyl group into aromatic amine structure enhances its antioxidant performance and makes it significantly more reactive with respect to carbon-centered organic radicals. Replacement of the hydrogen atom of a hydroxyl group by a methyl group decreases the anti-radical activity of aminophenols drastically. Compounds containing (or capable of forming) a quinonimine moiety interact with alkyl or alpha-hydroxyalkyl radicals most effectively, suppressing recombination and fragmentation reactions of the latter. In the sequence: aromatic amines--aminophenols--quinonimines, a trend towards enhancement of the ability of the compounds studied to react with carbon-centered radicals was noted. Also, this study presents for the first time evidence of riboflavin reactivity with respect to organic radicals.  相似文献   

15.
The intensity of the chemiluminescence of unstimulated human neutrophils in the presence of luminol was used to investigate the effects of low-molecular-weight copper complexes at the cellular level. In different models (superoxide dismutase mimetic activity, inhibition of haematoporphyrin derivative/light-induced lysis of cells), the biological activity of the complexes exceeded the activity of the ligands alone.  相似文献   

16.
17.
Modification of tyrosine (TyrOH) is used as a marker of oxidative and nitrosative stress. 3,3′-Dityrosine formation, in particular, reflects oxidative damage and results from the combination of two tyrosyl phenoxyl radicals (TyrO). This reaction is in competition with reductive processes in the cell which ‘repair’ tyrosyl radicals: possible reductants include thiols and ascorbate. In this study, a rate constant of 2 × 106 M−1 s−1 was estimated for the reaction between tyrosyl radicals and glutathione (GSH) at pH 7.15, generating the radicals by pulse radiolysis and monitoring the tyrosyl radical by kinetic spectrophotometry. Earlier measurements have suggested that this ‘repair’ reaction could be an equilibrium, and to investigate this possibility the reduction (electrode) potential of the (TyrO,H+/TyrOH) couple was reinvestigated by observing the fast redox equilibrium with the indicator 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonate). Extrapolation of the reduction potential of TyrO measured at pH 9–11 indicated the mid-point reduction potential of the tyrosyl radical at pH 7, Em7(TyrO,H+/TyrOH) = 0.93 ± 0.02 V. This is close to the reported reduction potential of the glutathione thiyl radical, Em7 = 0.94 ± 0.03 V, confirming the ‘repair’ equilibrium constant is of the order of unity and suggesting that efficient reduction of TyrO by GSH might require removal of thiyl radicals to move the equilibrium in the direction of repair. Loss of thiyl radicals, facilitating repair of TyrO, can arise either via conjugation of thiyl with thiol/thiolate or oxygen, or unimolecular transformation, the latter important at low concentrations of thiols and oxygen.  相似文献   

18.
Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.  相似文献   

19.
Photolytically produced H.-atoms in 6 mol dm-3 H2SO4/H2O glasses trapped at 77 K react upon annealing to 130 K with dissolved carbohydrates to form carbon-located free radicals by abstraction of carbon-bound protons. Analysis of electron spin resonance (e.s.r.) spectra at various annealing stages from alpha- and beta-D-glucose together with 6,6-d2-D-glucose, 6-deoxy-D-glucose, 2-deoxy-D-glucose, glucose-1-phosphate, D-xylose, D-allose and D-mannose indicates radical formation at all possible carbon sites with a strong preference for C1 and a somewhat enhanced contribution of C4 over the statistical expectation. The corresponding component spectra are analysed either by spectra isolation or simulation and their parameters are given. Intramolecular radical transformation at temperatures of 140-160 K is explained by acid-catalysed H2O-elimination. The findings are discussed in relation to the radiation-chemistry of aqueous glucose solutions. We thus show that the system of photolyzed Fe2+ in acidic glasses at low temperatures containing 10 mmol dm-3 carbohydrate is suitable for studying H(D.)-reactions by means of e.s.r. spectroscopy. Unlike previously used glasses containing carbohydrates, contributions of oxidation and reduction by direct effects or mixtures of direct and indirect effects and phase-effects due to incomplete glass formation are avoided.  相似文献   

20.
Glutathione peroxidase is a key enzyme in the antioxidant system of the cells. This enzyme has been shown to be irreversibly inactivated by H2O2, tert-butyl hydroperoxide (tert-BHP) and hydroxyl radicals when incubated without GSH. We observed that in our experimental conditions glutathione peroxidase was not degraded by trypsin or chymotrypsin while degraded by pronase, papa?n, pepsin, and lysosomal proteases. Hydroxyl radicals and superoxide anions but not H2O2 or tert-BHP could also fragment the enzyme on their own. A former incubation with H2O2, tert-BHP, or hydroxyl radicals also increased the proteolytic susceptibility of glutathione peroxidase. Like superoxide dismutase (SOD) and other oxidatively denatured proteins, glutathione peroxidase inactivated by peroxides or free radicals seems to be degraded preferentially by proteases. As hydroxyl radicals can fragment the enzyme by themselves, the increased proteolytic susceptibility afterwards is easily understood while the increased susceptibility induced by H2O2 and tert-BHP seems to be more specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号