首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The antimicrobial effects of ozonated water in a recirculating concurrent reactor were evaluated against four gram-positive and four gram-negative bacteria, two yeasts, and spores of Aspergillus niger. More than 5 log units each of Salmonella typhimurium and Escherichia coli cells were killed instantaneously in ozonated water with or without addition of 20 ppm of soluble starch (SS). In ozonated water, death rates among the gram-negative bacteria--S. typhimurium, E. coli, Pseudomonas aeruginosa, and Yersinia enterocolitica--were not significantly different (P > 0.05). Among gram-positive bacteria, Listeria monocytogenes was significantly P < 0.05) more sensitive than either Staphylococcus aureus or Enterococcus faecalis. In the presence of organic material, death rates of S. aureus compared with L. monocytogenes and E. coli compared with S. typhimurium in ozonated water were not significantly (P > 0.05) affected by SS addition but were significantly reduced (P < 0.05) by addition of 20 ppm of bovine serum albumin (BSA). More than 4.5 log units each of Candida albicans and Zygosaccharomyces bailii cells were killed instantaneously in ozonated water, whereas less than 1 log unit of Aspergillus niger spores was killed after a 5-min exposure. The average ozone output levels in the deionized water (0.188 mg/ml) or water with SS (0.198 mg/ml) did not differ significantly (P < 0.05) but were significantly lower in water containing BSA (0.149 mg/ml).  相似文献   

2.
Photosensitized inactivation of microorganisms.   总被引:5,自引:0,他引:5  
Despite major advances in medicine in the last 100 years, microbiologically-based diseases continue to present enormous global health problems. New approaches that are effective, affordable and widely applicable and that are not susceptible to resistance are urgently needed. The photodynamic approach is known to meet at least some of these criteria and, with the creation and testing of new photosensitisers, may develop to meet all of them. The approach, involving the combination of light and a photosensitising drug, is currently being applied to the treatment of diseases caused by bacteria, yeasts, viruses and parasites, as well as to sterilisation of blood and other products.  相似文献   

3.
Dried microorganisms are particularly resistant to high hydrostatic pressure effects. In this study, the survival of Saccharomyces cerevisiae was studied under pressure applied in different ways. Original processes and devices were purposely developed in our laboratory for long-term pressurization. Dried and wet yeast powders were submitted to high-pressure treatments (100-150 MPa for 24-144 h at 25 degrees C) through liquid media or inert gas. These powders were also pressurized after being vacuum-packed. In the case of wet yeasts, the pressurization procedure had little influence on the inactivation rate. In this case, inactivations were mainly due to hydrostatic pressure effects. Conversely, in the case of dried yeasts, inactivation was highly dependent on the treatment scheme. No mortality was observed when dried cells were pressurized in a non-aqueous liquid medium, but when nitrogen gas was used as the pressure-transmitting fluid, the inactivation rate was found to be between 1.5 and 2 log for the same pressure level and holding time. Several hypotheses were formulated to explain this phenomenon: the thermal effects induced by the pressure variations, the drying resulting from the gas pressure release and the sorption and desorption of the gas in cells. The highest inactivation rates were obtained with vacuum-packed dried yeasts. In this case, cell death occurred during the pressurization step and was induced by shear forces. Our results show that the mechanisms at the origin of cell death under pressure are strongly dependent on the nature of the pressure-transmitting medium and the hydration of microorganisms.  相似文献   

4.
The effects of high intensity light emissions, produced by a novel pulsed power energization technique (PPET), on the survival of bacterial populations of verocytotoxigenic Escherichia coli (serotype 0157:H7) and Listeria monocytogenes (serotype 4b) were investigated. Using this PPET approach, many megawatts (MW) of peak electrical power were dissipated in the light source in an extremely short energization time (about 1 μs). The light source was subjected to electric field levels greater than could be achieved under conventional continuous operation, which led to a greater production of the shorter bacteriocidal wavelengths of light. In the exposure experiments, pre-determined bacterial populations were spread onto the surface of Trypone Soya Yeast Extract Agar and were then treated to a series of light pulses (spectral range of 200–530 nm) with an exposure time ranging from 1 to 512 μs. While results showed that as few as 64 light pulses of 1 μs duration were required to reduce E. coli 0157:H7 populations by 99·9% and Listeria populations by 99%, the greater the number of light pulses the larger the reduction in cell numbers ( P < 0·01). Cell populations of E. coli 0157:H7 and Listeria were reduced by as much as 6 and 7 log10 orders at the upper exposure level of 512 μs, respectively. Survival data revealed that E. coli 0157:H7 was less resistant to the lethal effects of radiation ( P < 0·01). These studies have shown that pulsed light emissions can significantly reduce populations of E. coli 0157:H7 and L. monocytogenes on exposed surfaces with exposure times which are 4–6 orders of magnitude lower than those required using continuous u.v. light sources.  相似文献   

5.
6.
UV inactivation of pathogenic and indicator microorganisms   总被引:2,自引:0,他引:2  
Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.  相似文献   

7.
UV inactivation of pathogenic and indicator microorganisms.   总被引:10,自引:6,他引:4       下载免费PDF全文
Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.  相似文献   

8.
Summary The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm−2 h−1) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500–800·103 to 10–50·103 cells per ml.  相似文献   

9.
Virus loss in activated sludge appeared to be caused by microorganisms. This conclusion is supported by the finding that poliovirus infectivity decreased during incubation in mixed-liquor suspended solids, primarily because of a sedimentable, heat-sensitive component. Furthermore, broth spiked with mixed-liquor suspended solids acquired antiviral activity during incubation.  相似文献   

10.
R L Ward 《Applied microbiology》1982,43(5):1221-1224
Virus loss in activated sludge appeared to be caused by microorganisms. This conclusion is supported by the finding that poliovirus infectivity decreased during incubation in mixed-liquor suspended solids, primarily because of a sedimentable, heat-sensitive component. Furthermore, broth spiked with mixed-liquor suspended solids acquired antiviral activity during incubation.  相似文献   

11.
Pulsed-light system as a novel food decontamination technology: a review   总被引:2,自引:0,他引:2  
In response to consumer preferences for high quality foods that are as close as possible to fresh products, athermal technologies are being developed to obtain products with high levels of organoleptic and nutritional quality but free of any health risks. Pulsed light is a novel technology that rapidly inactivates pathogenic and food spoilage microorganisms. It appears to constitute a good alternative or a complement to conventional thermal or chemical decontamination processes. This food preservation method involves the use of intense, short-duration pulses of broad-spectrum light. The germicidal effect appears to be due to both photochemical and photothermal effects. Several high intensity flashes of broad spectrum light pulsed per second can inactivate microbes rapidly and effectively. However, the efficacy of pulsed light may be limited by its low degree of penetration, as microorganisms are only inactivated on the surface of foods or in transparent media such as water. Examples of applications to foods are presented, including microbial inactivation and effects on food matrices.  相似文献   

12.
The model of the thermal inactivation of microorganisms is presented. This model permits the explanation of all existing kinetic dependencies relating to the death of microorganisms, the restoration of sublethal damages, the influence of the medium and the temperature of incubation on the process of the production and control of vaccinal preparations.  相似文献   

13.
14.
Chemical inactivation of microorganisms is a common process widely employed in many fields such as in treatment of water, preservation in food industry and antimicrobial treatments in healthcare. For economy of applications and efficiency of treatment establishment the minimum dosage of breakpoint in the chemical application becomes essential. Even though experimental investigations have been extensive, theoretical understanding of such processes are demanding. Commonly employed theoretical analyses for the inactivation of microorganisms and depletion of chemicals include kinetics expressing the rates of depletion of chemical and microorganisms. The terms chemical demand (x) and specific disinfectant demand (α) are often used in theoretical modeling of inactivation. The value of specific disinfectant demand (α) has always been assumed to be a constant in these models. Intracellular concentration built up within the cells of the microorganisms during inactivation could lead to possible weakening effects of microorganisms thereby requiring lower doses as disinfection proceeds makes the assumption of constant α inaccurate. Model equations are formulated based on these observations co-relating the parameters α and x with a progressive inactivation (N/N0). The chemical concentration (C) is also presented in terms of the inactivation time (t) and the survival ratio (N/N0) for given pH and temperature conditions. The model is examined using experimentally verified Ct data of Giardia Cysts/chlorine system. The respective values of x for different survival ratios were evaluated from the data using MatLab software. Proposed model correlating for the disinfectant demand (x) with the survival ratio (N/N0) fits satisfactorily with those evaluated from data. The rate constants for different pH and temperature conditions are evaluated which showed compatibility with the Arrhenius model. The dependence of frequency factors with pH indicated compatibility with accepted models. The Ct values regenerated with the kinetic data shows a very accurate fit with published data.  相似文献   

15.
This study investigated the possibility that sublethal food preservation stresses (high or low temperature and osmotic and pH stress) can lead to changes in the nature and scale of antibiotic resistance (ABR) expressed by three food-related pathogens (Escherichia coli, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus). The study found that some sublethal stresses significantly altered antibiotic resistance. Incubation at sublethal high temperature (45 degrees C) decreased ABR. Incubation under increased salt (>4.5%) or reduced pH (<5.0) conditions increased ABR. Some of the pathogens continued to express higher levels of ABR after removal of stress, suggesting that in some cases the applied sublethal stress had induced stable increases in ABR. These results indicate that increased use of bacteriostatic (sublethal), rather than bactericidal (lethal), food preservation systems may be contributing to the development and dissemination of ABR among important food-borne pathogens.  相似文献   

16.
The fruit fly Drosophila melanogaster has become a model for olfaction and odour-mediated behaviour. In the wild, Drosophila flies aggregate on decaying fruit where they mate and oviposit and a strategy to find mates would be to locate fruit which has already been colonized by other flies. We therefore developed a bioassay to investigate attraction of males to food and fly odours. We showed that upwind flights are initiated by food odours. At shorter distances, males are attracted by volatiles produced by conspecifics. However, only odours produced by copulating flies attract males. This suggests either a synergistic effect of both male and female odours or changes in pheromone release during mating, that indicate the presence of sexually receptive females. Our findings demonstrate the essential role of food odours and pheromones for mate location in D. melanogaster.  相似文献   

17.
There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane fluidity, the uptake or synthesis of compatible solutes, the maintenance of the structural integrity of macromolecules and macromolecule assemblies, such as ribosomes and other components that affect gene expression. A specific cold response that is shared by nearly all food-related bacteria is the induction of the synthesis so-called cold-shock proteins (CSPs), which are small (7 kDa) proteins that are involved in mRNA folding, protein synthesis and/or freeze protection. In addition, CSPs are able to bind RNA and it is believed that these proteins act as RNA chaperones, thereby reducing the increased secondary folding of RNA at low temperatures. In this review established and novel aspects concerning the structure, function and control of these CSPs are discussed. A model for bacterial cold adaptation, with a central role for ribosomal functioning, and possible mechanisms for low-temperature sensing are discussed.  相似文献   

18.
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.  相似文献   

19.
The addition of penicillin (300–1,000 units/ml.) to a culture ofBacillus cereus during formation of the refractive prespores leads to lysis of the sporangia and to the release of spore components (calcium and dipicolinic acid) from the cells. Penicillin mildly raises the incorporation of amino acids, including diaminopimelic acid, into hot-TCA precipitate of cells, while chloramphenicol lowers it. In the later phases of penicillin inhibition, DAP-containing structures are also destroyed, including the fraction firmly bound to the envelope structures of the spore (in the control culture this fraction is not released until later, during digestion by enzymes localized in the envelope structures themselves). Penicillin inhibition of sporogenesis can be reversed by adapting the culture to penicillin or by simultaneously adding chloramphenicol. After the presporulation phase, sporogenesis is relatively resistant to chloramphenicol, but the whole process is considerably slowed down. Chloramphenicol also affects the morphology of the spores during their formation and inhibits their release from the sporangia until the late phase of sporulation.  相似文献   

20.
Histone (final concentration 200 μg/ml) inhibits the synthesis of both proteins and total ribonucleic acid (RNA) in germinated spores ofBacillus cereus. It also blocks a further cytodifferentiation of germinated spores into vegetative cells. The inhibition takes place both in complex media facilitating the differentiation (media with bactopeptone or casamino acids) and in limited minimal medium which permits only the germination and the synthesis of a limited amount of proteins and RNA. At this concentration, the histone inhibits strongly the synthesis of pulse-labelled RNA and brings about a change in the sedimentation constants of ribosomes. The results are interpreted in terms of the strong affinity of the histone towards electronegative peripheral layers and intracellular structures and macromolecules of the germinated spore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号