首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Atovaquone is a substituted hydroxynaphthoquinone that is widely used to prevent and clear Plasmodium falciparum malaria and Pneumocystis jirovecii pneumonia. Atovaquone inhibits respiration in target organisms by specifically binding to the ubiquinol oxidation site at center P of the cytochrome bc(1) complex. The failure of atovaquone treatment and mortality of patients with malaria and P. jirovecii pneumonia has been linked to the appearance of mutations in the cytochrome b gene. To better understand the molecular basis of atovaquone resistance, we have introduced seven of the mutations from atovaquone-resistant P. jirovecii into the cytochrome b gene of Saccharomyces cerevisiae and thus obtained cytochrome bc(1) complexes resistant to inhibition by atovaquone. In these enzymes, the IC(50) for atovaquone increases from 25 nm for the enzyme from wild-type yeast to >500 nm for some of the mutated enzymes. Modeling of the changes in cytochrome b structure and atovaquone binding with the mutated bc(1) complexes provides the first quantitative explanation for the molecular basis of atovaquone resistance.  相似文献   

2.
3.
Atovaquone represents a class of antimicrobial agents with a broad-spectrum activity against various parasitic infections, including malaria, toxoplasmosis and Pneumocystis pneumonia. In malaria parasites, atovaquone inhibits mitochondrial electron transport at the level of the cytochrome bc1 complex and collapses mitochondrial membrane potential. In addition, this drug is unique in being selectively toxic to parasite mitochondria without affecting the host mitochondrial functions. A better understanding of the structural basis for the selective toxicity of atovaquone could help in designing drugs against infections caused by mitochondria-containing parasites. To that end, we derived nine independent atovaquone-resistant malaria parasite lines by suboptimal treatment of mice infected with Plasmodium yoelii; these mutants exhibited resistance to atovaquone-mediated collapse of mitochondrial membrane potential as well as inhibition of electron transport. The mutants were also resistant to the synergistic effects of atovaquone/ proguanil combination. Sequencing of the mitochondrially encoded cytochrome b gene placed these mutants into four categories, three with single amino acid changes and one with two adjacent amino acid changes. Of the 12 nucleotide changes seen in the nine independently derived mutants 11 replaced A:T basepairs with G:C basepairs, possibly because of reactive oxygen species resulting from atovaquone treatment. Visualization of the resistance-conferring amino acid positions on the recently solved crystal structure of the vertebrate cytochrome bc1 complex revealed a discrete cavity in which subtle variations in hydrophobicity and volume of the amino acid side-chains may determine atovaquone-binding affinity, and thereby selective toxicity. These structural insights may prove useful in designing agents that selectively affect cytochrome bc1 functions in a wide range of eukaryotic pathogens.  相似文献   

4.
Atovaquone is a new anti-malarial agent that specifically targets the cytochrome bc1 complex and inhibits parasite respiration. A growing number of failures of this drug in the treatment of malaria have been genetically linked to point mutations in the mitochondrial cytochrome b gene. To better understand the molecular basis of atovaquone resistance in malaria, we introduced five of these mutations, including the most prevalent variant found in Plasmodium falciparum (Y268S), into the cytochrome b gene of the budding yeast Saccharomyces cerevisiae and thus obtained cytochrome bc1 complexes resistant to inhibition by atovaquone. By modeling the variations in cytochrome b structure and atovaquone binding with the mutated bc1 complexes, we obtained the first quantitative explanation for the molecular basis of atovaquone resistance in malaria parasites.  相似文献   

5.
Atovaquone is an antiparasitic drug that selectively inhibits electron transport through the parasite mitochondrial cytochrome bc1 complex and collapses the mitochondrial membrane potential at concentrations far lower than those at which the mammalian system is affected. Because this molecule represents a new class of antimicrobial agents, we seek a deeper understanding of its mode of action. To that end, we employed site-directed mutagenesis of a bacterial cytochrome b, combined with biophysical and biochemical measurements. A large scale domain movement involving the iron-sulfur protein subunit is required for electron transfer from cytochrome b-bound ubihydroquinone to cytochrome c1 of the cytochrome bc1 complex. Here, we show that atovaquone blocks this domain movement by locking the iron-sulfur subunit in its cytochrome b-binding conformation. Based on our malaria atovaquone resistance data, a series of cytochrome b mutants was produced that were predicted to have either enhanced or reduced sensitivity to atovaquone. Mutations altering the bacterial cytochrome b at its ef loop to more closely resemble Plasmodium cytochrome b increased the sensitivity of the cytochrome bc1 complex to atovaquone. A mutation within the ef loop that is associated with resistant malaria parasites rendered the complex resistant to atovaquone, thereby providing direct proof that the mutation causes atovaquone resistance. This mutation resulted in a 10-fold reduction in the in vitro activity of the cytochrome bc1 complex, suggesting that it may exert a cost on efficiency of the cytochrome bc1 complex.  相似文献   

6.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc(1) complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc(1) complex are not well understood. Atovaquone, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc(1) complexes as surrogates to model the interaction of atovaquone with the bc(1) complexes of the target pathogens and human host. As a first step to identify new cytochrome bc(1) complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc(1) complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc(1) complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

7.
Atovaquone is an anti-malarial drug used in combination with proguanil (e.g. Malarone(TM)) for the curative and prophylactic treatment of malaria. Atovaquone, a 2-hydroxynaphthoquinone, is a competitive inhibitor of the quinol oxidation (Q(o)) site of the mitochondrial cytochrome bc(1) complex. Inhibition of this enzyme results in the collapse of the mitochondrial membrane potential, disruption of pyrimidine biosynthesis, and subsequent parasite death. Resistance to atovaquone in the field is associated with point mutations in the Q(o) pocket of cytochrome b, most notably near the conserved Pro(260)-Glu(261)-Trp(262)-Tyr(263) (PEWY) region in the ef loop). The effect of this mutation has been extensively studied in model organisms but hitherto not in the parasite itself. Here, we have performed a molecular and biochemical characterization of an atovaquone-resistant field isolate, TM902CB. Molecular analysis of this strain reveals the presence of the Y268S mutation in cytochrome b. The Y268S mutation is shown to confer a 270-fold shift of the inhibitory constant (K(i)) for atovaquone with a concomitant reduction in the V(max) of the bc(1) complex of ~40% and a 3-fold increase in the observed K(m) for decylubiquinol. Western blotting analyses reveal a reduced iron-sulfur protein content in Y268S bc(1) suggestive of a weakened interaction between this subunit and cytochrome b. Gene expression analysis of the TM902CB strain reveals higher levels of expression, compared with the 3D7 (atovaquone-sensitive) control strain in bc(1) and cytochrome c oxidase genes. It is hypothesized that the observed differential expression of these and other key genes offsets the fitness cost resulting from reduced bc(1) activity.  相似文献   

8.
Atovaquone is an antimalarial agent that specifically inhibits the cytochrome bc(1) complex of the cytochrome pathway. High-level atovaquone resistance is associated with a point mutation in the cytochrome b gene. A pair of isogenic clinical isolates of Plasmodium falciparum derived from before and after the acquisition of atovaquone resistance was used to determine whether the change in the cytochrome b gene resulted in changes in respiration in response to atovaquone. Since P. falciparum appears to utilize a branched respiratory system comprising both the cytochrome and an alternative respiratory pathway, the proportion of each pathway utilized by the sensitive and resistant parasites was investigated. Atovaquone inhibited total parasite oxygen consumption by up to 66% in the sensitive isolate but only up to 28% in the resistant isolate. Both the atovaquone-sensitive and the atovaquone-resistant parasites were comparably sensitive to the alternative pathway inhibitor, salicylhydroxamic acid. Atovaquone appeared to partially inhibit the rate of oxygen consumed through the alternative pathway in only the atovaquone-sensitive isolate. Cross resistance was noted between atovaquone and a new antimalarial agent WR243251. However, the level of WR243251 resistance was very modest compared to the level of atovaquone resistance. WR243251 was shown to rapidly reduce the rate of parasite oxygen consumption by almost 80% in the atovaquone-sensitive isolate and by 57% in the atovaquone-resistant isolate. Drug interaction studies suggest that atovaquone and WR243251 may inhibit growth additively or with mild synergy. Together, these results suggest that while WR243251 may inhibit respiration, its target of action probably differs from that of atovaquone.  相似文献   

9.
Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.  相似文献   

10.
Antimalarial quinolones: synthesis, potency, and mechanistic studies   总被引:3,自引:0,他引:3  
In the present article we examine the antiplasmodial activities of novel quinolone derivatives bearing extended alkyl or alkoxy side chains terminated by a trifluoromethyl group. In the series under investigation, the IC50 values ranged from 1.2 to approximately 30 nM against chloroquine-sensitive and multidrug-resistant Plasmodium falciparum strains. Modest to significant cross-resistance was noted in evaluation of these haloalkyl- and haloalkoxyquinolones for activity against the atovaquone-resistant clinical isolate Tm90-C2B, indicating that a primary target for some of these compounds is the parasite cytochrome bc1 complex. Additional evidence to support this biochemical mechanism includes the use of oxygen biosensor plate technology to show that the quinolone derivatives block oxygen consumption by parasitized red blood cells in a fashion similar to atovaquone in side-by-side experiments. Atovaquone is extremely potent and is the only drug in clinical use that targets the Plasmodium bc1 complex, but rapid emergence of resistance to it in both mono- and combination therapy is evident and therefore additional drugs are needed to target the cytochrome bc1 complex which are active against atovaquone-resistant parasites. Our study of a number of halogenated alkyl and alkoxy 4(1H)-quinolones highlights the potential for development of "endochin-like quinolones" (ELQ), bearing an extended trifluoroalkyl moiety at the 3-position, that exhibit selective antiplasmodial effects in the low nanomolar range and inhibitory activity against chloroquine and atovaquone-resistant parasites. Further studies of halogenated alkyl- and alkoxy-quinolones may lead to the development of safe and effective therapeutics for use in treatment or prevention of malaria and other parasitic diseases.  相似文献   

11.
The lung pathogen Pneumocystis spp. is the causative agent of a type of pneumonia that can be fatal in people with defective immune systems, such as AIDS patients. Atovaquone, an analog of ubiquinone (coenzyme Q [CoQ]), inhibits mitochondrial electron transport and is effective in clearing mild to moderate cases of the infection. Purified rat-derived intact Pneumocystis carinii cells synthesize de novo four CoQ homologs, CoQ7, CoQ8, CoQ9, and CoQ10, as demonstrated by the incorporation of radiolabeled precursors of both the benzoquinone ring and the polyprenyl chain. A central step in CoQ biosynthesis is the condensation of p-hydroxybenzoic acid (PHBA) with a long-chain polyprenyl diphosphate molecule. In the present study, CoQ biosynthesis was evaluated by the incorporation of PHBA into completed CoQ molecules using P. carinii cell-free preparations. CoQ synthesis in whole-cell homogenates was not affected by the respiratory inhibitors antimycin A and dicyclohexylcarbodiimide but was diminished by atovaquone. Thus, atovaquone has inhibitory activity on both electron transport and CoQ synthesis in this pathogen. Furthermore, both the mitochondrial and microsomal fractions were shown to synthesize de novo all four P. carinii CoQ homologs. Interestingly, atovaquone inhibited microsomal CoQ synthesis, whereas it had no effect on mitochondrial CoQ synthesis. This is the first pathogenic eukaryotic microorganism in which biosynthesis of CoQ molecules from the initial PHBA:polyprenyl transferase reaction has been unambiguously shown to occur in two distinct compartments of the same cell.  相似文献   

12.
Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc 1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum , or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b , one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.  相似文献   

13.
Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum, or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b, one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.  相似文献   

14.
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.  相似文献   

15.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

16.
A rapid high-performance liquid chromatography assay has been developed for the drug atovaquone, which is currently being used to treat Pneumocystis carinii pneumonia and Taxoplasma gondii encephalitis associated with the acquired immunodeficiency syndrome (AIDS). Protein is precipitated from plasma with acetonitrile-aqueous 1% acetic acid (85:15). The supernatant is assayed on a C6 column using methanol-10 mM triethylamine in aqueous 0.2% trifluoroacetic acid (76:24) with detection at 254 nm. The working assay range was 0.5 to 50 μg/ml. Recovery was 97% and the between-day coefficients of variation were 2.1% at 50 μg/ml and 10.3% at 1 μg/ml. A number of drugs commonly used to treat AIDS and its complications did not interfere with the assay.  相似文献   

17.
Hydroxynaphthoquinone 566C80 was synthesised and initially developed as an antimalarial with potent activity against drug-resistant strains of the human malaria parasite, Plasmodium falciparum. Subsequent studies have revealed that in addition, this compound has experimental activity, both in vitro and in vivo, against Pneumocystis carinii and Toxoplasma gondii; the data obtained thus far for Cryptosporidium parvum are equivocal. Currently 566C80 is being assessed clinically not only against malaria, but also against P. carinii pneumonia, toxoplasmosis and cryptosporidiosis.  相似文献   

18.
We report the first in vitro and genetic confirmation of Malarone® (GlaxoSmithKline; atovaquone and proguanil hydrochloride) resistance in Plasmodium falciparum acquired in Africa. On presenting with malaria two weeks after returning from a 4-week visit to Lagos, Nigeria without prophylaxis, a male patient was given a standard 3-day treatment course of Malarone®. Twenty-eight days later the parasitaemia recrudesced. Parasites were cultured from the blood and the isolate (NGATV01) was shown to be resistant to atovaquone and the antifolate pyrimethamine. The cytochrome b gene of isolate NGATV01 showed a single mutation, Tyr268Asn which has not been seen previously.  相似文献   

19.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

20.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号