首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coiled-coils are widespread protein–protein interaction motifs typified by the heptad repeat (abcdefg)n in which “a” and “d” positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583–611), “Q1-short,” of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 Å resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585–621, “Q1-long.” Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include “a” and “d” positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.  相似文献   

2.
Tsuruda PR  Julius D  Minor DL 《Neuron》2006,51(2):201-212
Transient receptor potential (TRP) channels mediate numerous sensory transduction processes and are thought to function as tetramers. TRP channel physiology is well studied; however, comparatively little is understood regarding TRP channel assembly. Here, we identify an autonomously folded assembly domain from the cold- and menthol-gated channel TRPM8. We show that the TRPM8 cytoplasmic C-terminal domain contains a coiled coil that is necessary for channel assembly and sufficient for tetramer formation. Cell biological experiments indicate that coiled-coil formation is required for proper channel maturation and trafficking and that the coiled-coil domain alone can act as a dominant-negative inhibitor of functional channel expression. Our data define an authentic TRP modular assembly domain, establish a clear role for coiled coils in ion channel assembly, demonstrate that coiled-coil assembly domains are a general feature of TRPM channels, and delineate a new tool that should be of general use in dissecting TRPM channel function.  相似文献   

3.
TRPM2 channels, activated by adenosine diphosphoribose and related molecules, are assembled as oligomers and most likely tetramers. However, the molecular determinants driving the subunit interaction and assembly of the TRPM2 channels are not well defined. Here we examined, using site-directed mutagenesis in conjunction with co-immunoprecipitation and patch clamp recording, the role of a coiled-coil domain in the intracellular C terminus of TRPM2 subunit in subunit interaction and channel assembly. Deletion of the coiled-coil domain resulted in severe disruption of the subunit interaction and substantial loss of the adenosine diphosphoribose-evoked channel currents. Individual or combined mutations to glutamine of the hydrophobic residues at positions a and d of the abcdef heptad repeat, key residues for protein-protein interaction, significantly reduced the subunit interaction and channel currents; the mutational effects on the subunit interaction and channel currents were clearly correlated. Furthermore, deletion of the coiled-coil domain in a pore mutant subunit abolished its dominant negative phenotypic functional suppression. These results provide strong evidence that the coiled-coil domain is critically engaged in the TRPM2 subunit interaction and such interaction is required for assembly of functional TRPM2 channel. The coiled-coil domain, which is highly conserved within the TRPM subfamily, may serve as a general structural element governing the assembly of TRPM channels.  相似文献   

4.
Mutations in KCNQ K+ channel genes underlie several human pathologies. KCNQ α-subunits form either homotetramers or hetero-oligomers with a restricted subset of other KCNQ α-subunits or with KCNE β-subunits. KCNQ1 assembles with KCNE β-subunits but not with other KCNQ α-subunits. By contrast, KCNQ3 interacts with KCNQ2, KCNQ4 and KCNQ5. Using a chimaeric strategy, we show that a cytoplasmic carboxy-terminal subunit interaction domain (sid) suffices to transfer assembly properties between KCNQ3 and KCNQ1. A chimaera (KCNQ1-sidQ3) carrying the si domain of KCNQ3 within the KCNQ1 backbone interacted with KCNQ2, KCNQ3 and KCNQ4 but not with KCNQ1. This interaction was shown by enhancement of KCNQ2 currents, testing for dominant-negative effects of pore mutants, determining its effects on surface expression and co-immunoprecipitation experiments. Conversely, a KCNQ3-sidQ1 chimaera no longer affects KCNQ2 but interacts with KCNQ1. We conclude that the si domain suffices to determine the subunit specificity of KCNQ channel assembly.  相似文献   

5.
6.
Kv7.2 and Kv7.3 (encoded by KCNQ2 and KCNQ3) are homologous subunits forming a widely expressed neuronal voltage-gated K(+) (Kv) channel. Hypomorphic mutations in either KCNQ2 or KCNQ3 cause a highly penetrant, though transient, human phenotype-epilepsy during the first months of life. Some KCNQ2 mutations also cause involuntary muscle rippling, or myokymia, which is indicative of motoneuron axon hyperexcitability. Kv7.2 and Kv7.3 are concentrated at axonal initial segments (AISs), and at nodes of Ranvier in the central and peripheral nervous system. Kv7.2 and Kv7.3 share a novel ~80 residue C-terminal domain bearing an "anchor" motif, which interacts with ankyrin-G and is required for channel AIS (and likely, nodal) localization. This domain includes the sequence IAEGES/TDTD, which is analogous (not homologous) to the ankyrin-G interaction motif of voltage-gated Na(+) (Na(V)) channels. The KCNQ subfamily is evolutionarily ancient, with two genes (KCNQ1 and KCNQ5) persisting as orthologues in extant bilaterian animals from worm to man. However, KCNQ2 and KCNQ3 arose much more recently, in the interval between the divergence of extant jawless and jawed vertebrates. This is precisely the interval during which myelin and saltatory conduction evolved. The natural selection for KCNQ2 and KCNQ3 appears to hinge on these subunits' unique ability to be coordinately localized with Na(V) channels by ankyrin-G, and the resulting enhancement in the reliability of neuronal excitability.  相似文献   

7.
Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold.  相似文献   

8.
The voltage-gated H+ channel (Hv) is a H+-permeable voltage-sensor domain (VSD) protein that consists of four transmembrane segments (S1–S4). Hv assembles as a dimeric channel and two transmembrane channel domains function cooperatively, which is mediated by the coiled-coil assembly domain in the cytoplasmic C terminus. However, the structural basis of the interdomain interactions remains unknown. Here, we provide a picture of the dimer configuration based on the analyses of interactions among two VSDs and a coiled-coil domain. Systematic mutations of the linker region between S4 of VSD and the coiled-coil showed that the channel gating was altered in the helical periodicity with the linker length, suggesting that two domains are linked by helices. Cross-linking analyses revealed that the two S4 helices were situated closely in the dimeric channel. The interaction interface between the two S4 and the assembly interface of the coiled-coil domain were aligned in the same direction based on the phase angle calculation along α helices. Collectively, we propose that continuous helices stretching from the transmembrane to the cytoplasmic region in the dimeric interface regulate the channel activation in the Hv dimer.  相似文献   

9.
The five KCNE genes encode a family of type I transmembrane peptides that assemble with KCNQ1 and other voltage-gated K(+) channels, resulting in potassium conducting complexes with varied channel-gating properties. It has been recently proposed that a triplet of amino acids within the transmembrane domain of KCNE1 and KCNE3 confers modulation specificity to the peptide, since swapping of these three residues essentially converts the recipient KCNE into the donor (Melman, Y.F., A. Domenech, S. de la Luna, and T.V. McDonald. 2001. J. Biol. Chem. 276:6439-6444). However, these results are in stark contrast with earlier KCNE1 deletion studies, which demonstrated that a COOH-terminal region, highly conserved between KCNE1 and KCNE3, was responsible for KCNE1 modulation of KCNQ1 (Tapper, A.R., and A.L. George. 2000 J. Gen. Physiol. 116:379-389.). To ascertain whether KCNE3 peptides behave similarly to KCNE1, we examined a panel of NH(2)- and COOH-terminal KCNE3 truncation mutants to directly determine the regions required for assembly with and modulation of KCNQ1 channels. Truncations lacking the majority of their NH(2) terminus, COOH terminus, or mutants harboring both truncations gave rise to KCNQ1 channel complexes with basal activation, a hallmark of KCNE3 modulation. These results demonstrate that the KCNE3 transmembrane domain is sufficient for assembly with and modulation of KCNQ1 channels and suggests a bipartite model for KCNQ1 modulation by KCNE1 and KCNE3 subunits. In this model, the KCNE3 transmembrane domain is active in modulation and overrides the COOH terminus' contribution, whereas the KCNE1 transmembrane domain is passive and reveals COOH-terminal modulation of KCNQ1 channels. We furthermore test the validity of this model by using the active KCNE3 transmembrane domain to functionally rescue a nonconducting, yet assembly and trafficking competent, long QT mutation located in the conserved COOH-terminal region of KCNE1.  相似文献   

10.
In the central and peripheral nervous system, the assembly of KCNQ3 with KCNQ2 as mostly heteromers, but also homomers, underlies “M-type” currents, a slowly-activating voltage-gated K+ current that plays a dominant role in neuronal excitability. KCNQ3 homomers yield much smaller currents compared to KCNQ2 or KCNQ4 homomers and KCNQ2/3 heteromers. This smaller current has been suggested to result either from divergent channel surface expression or from a pore that is more unstable in KCNQ3. Channel surface expression has been shown to be governed by the distal part of the C-terminus in which helices C and D are critical for channel trafficking and assembly. A sequence alignment of this region in KCNQ channels shows that KCNQ3 possesses a longer linker between helix C and D compared to the other KCNQ subunits. Here, we investigate the role of the extra residues of this linker on KCNQ channel expression. Deletion of these residues increased KCNQ3 current amplitudes. Total internal reflection fluorescence imaging and plasma membrane protein assays suggest that the increase in current is due to a higher surface expression of the channels. Conversely, introduction of the extra residues into the linker between helices C and D of KCNQ4 reduced current amplitudes by decreasing the number of KCNQ4 channels at the plasma membrane. Confocal imaging suggests a higher fraction of channels, which possess the extra residues of helix C-D linker, were retained within the endoplasmic reticulum. Such retention does not appear to lead to protein accumulation and activation of the unfolded protein response that regulates protein folding and maintains endoplasmic reticulum homeostasis. Taken together, we conclude that extra helix C-D linker residues play a role in KCNQ3 current amplitudes by controlling the exit of the channel from the endoplasmic reticulum.  相似文献   

11.
The function of the KCNQ4 channel in the auditory setting is crucial to hearing, underpinned by the finding that mutations of the channel result in an autosomal dominant form of nonsyndromic progressive high frequency hearing loss. The precise function of KCNQ4 in the inner ear has not been established. However, recently we demonstrated that there is differential expression among four splice variants of KCNQ4 (KCNQ4_v1-v4) along the tonotopic axis of the cochlea. Alternative splicing specifies the outcome of functional channels by modifying the amino acid sequences within the C terminus at a site designated as the membrane proximal region. We show that variations within the C terminus of splice variants produce profound differences in the voltage-dependent phenotype and functional expression of the channel. KCNQ4_v4 lacks exons 9-11, resulting in deletion of 54 amino acid residues adjacent to the S6 domain compared with KCNQ4_v1. Consequently, the voltage-dependent activation of KCNQ4_v4 is shifted leftward by approximately 20 mV, and the number of functional channels is increased severalfold compared with KCNQ4_v1. The properties of KCNQ4_v2 and KCNQ4_v3 fall between KCNQ4_v1 and KCNQ4_v4. Because of variations in the calmodulin binding domains of the splice variants, the channels are differentially modulated by calmodulin. Co-expression of these splice variants yielded current magnitudes suggesting that the channels are composed of heterotetramers. Indeed, a dominant negative mutant of KCNQ4_v1 cripples the currents of the entire KCNQ4 channel family. Furthermore, the dominant negative KCNQ4 mutant stifles the activity of KCNQ2-5, raising the possibility of a global disruption of KCNQ channel activity and the ensuing auditory phenotype.  相似文献   

12.
Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca2+ elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.  相似文献   

13.
KCNQ2 and KCNQ3 subunits belong to the six transmembrane domain K+ channel family and loss of function mutations are associated with benign familial neonatal convulsions. KCNE2 (MirP1) is a single transmembrane domain subunit first described to be a modulator of the HERG potassium channel in the heart. Here, we show that KCNE2 is present in brain, in areas which also express KCNQ2 and KCNQ3 channels. We demonstrate that KCNE2 associates with KCNQ2 and/or KCNQ3 subunits. In transiently transfected COS cells, KCNE2 expression produces an acceleration of deactivation kinetics of KCNQ2 and of the KCNQ2–KCNQ3 complex. Effects of two previously identified arrhythmogenic mutations of KCNE2 have also been analyzed.  相似文献   

14.
The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.  相似文献   

15.
A trafficking checkpoint controls GABA(B) receptor heterodimerization   总被引:19,自引:0,他引:19  
Margeta-Mitrovic M  Jan YN  Jan LY 《Neuron》2000,27(1):97-106
Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient heterodimer assembly. We found that expression of the GB1 subunit on the cell surface is prevented through a C-terminal retention motif RXR(R); this sequence is reminiscent of the ER retention/retrieval motif RKR identified in subunits of the ATP-sensitive K+ channel. Interaction of GB1 and GB2 through their C-terminal coiled-coil alpha helices masks the retention signal in GB1, allowing the plasma membrane expression of the assembled complexes. Because individual GABA(B) receptor subunits and improperly assembled receptor complexes are not functional even if expressed on the cell surface, we conclude that a trafficking checkpoint ensures efficient assembly of functional GABA(B) receptors.  相似文献   

16.
Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H+ (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.  相似文献   

17.
BACKGROUND: The parallel two-stranded alpha-helical coiled coil is the most frequently encountered subunit-oligomerization motif in proteins. The simplicity and regularity of this motif have made it an attractive system to explore some of the fundamental principles of protein folding and stability and to test the principles of de novo design. RESULTS: The X-ray crystal structure of the 18-heptad-repeat alpha-helical coiled-coil domain of the actin-bundling protein cortexillin I from Dictyostelium discoideum is a tightly packed parallel two-stranded alpha-helical coiled coil. It harbors a distinct 14-residue sequence motif that is essential for coiled-coil formation, and is a prerequisite for the assembly of cortexillin I. The atomic structure reveals novel types of ionic coiled-coil interactions. In particular, the structure shows that a characteristic interhelical and intrahelical salt-bridge pattern, in combination with the hydrophobic interactions occurring at the dimer interface, is the key structural feature of its coiled-coil trigger site. CONCLUSIONS: The knowledge gained from the structure could be used in the de novo design of alpha-helical coiled coils for applications such as two-stage drug targeting and delivery systems, and in the design of coiled coils as templates for combinatorial helical libraries in drug discovery and as synthetic carrier molecules.  相似文献   

18.
The Kv7 subfamily of voltage-dependent potassium channels, distinct from other subfamilies by dint of its large intracellular COOH terminus, acts to regulate excitability in cardiac and neuronal tissues. KCNQ1 (Kv7.1), the founding subfamily member, encodes a channel subunit directly implicated in genetic disorders, such as the long QT syndrome, a cardiac pathology responsible for arrhythmias. We have used a recombinant protein preparation of the COOH terminus to probe the structure and function of this domain and its individual modules. The COOH-terminal proximal half associates with one calmodulin constitutively bound to each subunit where calmodulin is critical for proper folding of the whole intracellular domain. The distal half directs tetramerization, employing tandem coiled-coils. The first coiled-coil complex is dimeric and undergoes concentration-dependent self-association to form a dimer of dimers. The outer coiled-coil is parallel tetrameric, the details of which have been elucidated based on 2.0 A crystallographic data. Both coiled-coils act in a coordinate fashion to mediate the formation and stabilization of the tetrameric distal half. Functional studies, including characterization of structure-based and long QT mutants, prove the requirement for both modules and point to complex roles for these modules, including folding, assembly, trafficking, and regulation.  相似文献   

19.
STIM1 and ORAI1 (also termed CRACM1) are essential components of the classical calcium release-activated calcium current; however, the mechanism of the transmission of information of STIM1 to the calcium release-activated calcium/ORAI1 channel is as yet unknown. Here we demonstrate by F?rster resonance energy transfer microscopy a dynamic coupling of STIM1 and ORAI1 that culminates in the activation of Ca(2+) entry. F?rster resonance energy transfer imaging of living cells provided insight into the time dependence of crucial events of this signaling pathway comprising Ca(2+) store depletion, STIM1 multimerization, and STIM1-ORAI1 interaction. Accelerated store depletion allowed resolving a significant time lag between STIM1-STIM1 and STIM1-ORAI1 interactions. Store refilling reversed both STIM1 multimerization and STIM1-ORAI1 interaction. The cytosolic STIM1 C terminus itself was able, in vitro as well as in vivo, to associate with ORAI1 and to stimulate channel function, yet without ORAI1-STIM1 cluster formation. The dynamic interaction occurred via the C terminus of ORAI1 that includes a putative coiled-coil domain structure. An ORAI1 C terminus deletion mutant as well as a mutant (L273S) with impeded coiled-coil domain formation lacked both interaction as well as functional communication with STIM1 and failed to generate Ca(2+) inward currents. An N-terminal deletion mutant of ORAI1 as well as the ORAI1 R91W mutant linked to severe combined immune deficiency syndrome was similarly impaired in terms of current activation despite being able to interact with STIM1. Hence, the C-terminal coiled-coil motif of ORAI1 represents a key domain for dynamic coupling to STIM1.  相似文献   

20.
In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the co-localization of voltage-gated sodium (Nav) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ∼40 to 1. Analogous “anchor” peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Nav channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Nav1.2 ≫ KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Nav1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1–7) binds phosphorylated Nav or KCNQ anchors robustly. However, mutational analysis of R1–7 reveals differences in binding mechanisms. A smaller fragment, R1–6, exhibits much-diminished KCNQ3 binding but binds Nav1.2 well. Two lysine residues at the tip of repeat 2–3 β-hairpin (residues 105–106) are critical for Nav1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Nav1.2 binding. AnkG''s alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Nav channel binding. These findings suggest that the 40:1 Nav:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号