首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Phage P22 defective in gene 24 and harbouring the oc mutation k5 in OR exhibits a strongly increased c2-repressor synthesis after infection of non-lysogenic S. typhimurium. The repressor synthesis depends strictly on an intact c1 gene. The kinetics of its synthesis, as monitored by polyacrylamid gel electrophoresis, is the same as with P22 c +, namely a turn off 8–10 min after infection. — After infection of P22-lysogenic bacteria with either P22 24 k5 or P22 24 k5 cl, much lower amounts of repressor are synthesized but again with the same kinetics. These results suggest a cro-like function acting at PRE and PRM of P22. The possible reason for the c2 overproduction is discussed.  相似文献   

2.
3.
P22 cro? mutants were isolated as one class of phage P22 mutants (cly mutants) that have a very high frequeney of lysogeny relative to wild-type P22. These mutants: (1) do not form plaques and over-lysogenize relative to wild-type P22 after infection of a wild-type Salmonella host; (2) are defective in anti-immunity; and (3) fail to turn off high-level synthesis of P22 c2-repressor after infection.P22 cro? mutations are recessive and map between the P22 c2 and c1 genes. P22 cro? mutations are suppressed by clear-plaque mutations in the c1 gene, one of which is simultaneously cy?. They are also suppressed, but incompletely, by mutations in the c2 (repressor) gene, especially those that do not completely abolish c2 gene function.Salmonella host mutants have been isolated that are permissive for the lytic growth of the P22 cro? mutants.  相似文献   

4.
Summary P1 infected minicells synthesize approximately 50 phage-encoded polypeptides. Phage expression is temporally controlled, demonstrating phage polypeptides synthesized both early and late after infection. The P1 repressor, gpc1 1 (Mr=33,000), repressor bypass polypeptide, gprebA (Mr=27,500) and cistron 10 product, (gp10) (Mr=64,000), have been identified by infection of minicells with P1 amber mutants. The beta-lactamase gene product (gpbla) carried by the closely related phage P7 and the chloramphenicol acetyl-transferase gene product (gpcat) carried by P1 Cm (in Tn9) have been demonstrated. Infection of minicells by P1vir s or P1c4 mutants results in increased synthesis of gprebA and a second polypeptide designated gprebB (Mr=40,000). The P1vir11 mutation leads to increased synthesis of a small polypeptide (Mr=3,500) but does not affect the amount of gpc1 synthesized.  相似文献   

5.
Summary Phage P22 mutationc27 defines a site required for establishment, but not maintenance of repressor synthesis. This study confirms that P22c27 is able to synthesize repressor if active repressor is present. An interaction involving gene products ofc1 andc3 and the sitec27 retards expression of the lytic genes of P22. Mutations in genec1 eliminate the retardation of lytic gene expression, butc27 does not alleviate the retardation. These results are used to construct a model that postulates that binding ofc1 andc3 products to DNA at or nearc27 is sufficient to cause retardation of lytic gene expression. The functioning ofc27 is contrasted to that of the analogouscy mutants of λ. The effect of thec27 mutation upon alleviation of “c1 repression” was studied in a partial revertant ofSalmonella typhimurium Pox-1 in whichc1 repression is exaggerated. The higher frequency of lysogenization seen in the mutant host is related to enhancedc1 repression.  相似文献   

6.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

7.
8.
9.
Mutational analysis of the arginine repressor of Escherichia coli   总被引:1,自引:0,他引:1  
Arginine biosynthesis in Escherichia coli is negatively regulated by a hexameric repressor protein, encoded by the gene argR and the corepressor arginine. By hydroxylamine mutagenesis two types of argR mutants were isolated and mapped. The first type is transdominant. In heterodiploids, these mutant polypeptides reduce the activity of the wild-type repressor, presumably by forming heteropolymers. Four mutant repressor proteins were purified. Two of these map in the N-terminal half of the protein. Gel retardation experiments showed that they bind poorly to DNA, but they could be precipitated by l -arginine at the same concentration as the wild-type repressor. The other two mutant repressors map in the C-terminal half of the protein. They are poorly precipitated by L-arginine and they bind poorly to DNA. In addition, one of these mutants appears to exist as a dimer. The second type of argR mutant repressor consists of super-repressors. Such mutants behave as arginine auxotrophs as a result of hyper-repression of arginine biosynthetic enzymes. They map at many locations throughout the argR gene. Three arginine super-repressor proteins were purified, in comparison with the wild-type repressor, two of them were shown to have a higher DNA-binding affinity in the absence of bound arginine, while the third was shown to have a higher DNA-binding affinity when bound to arginine.  相似文献   

10.
11.
A rifampin-resistant mutant of Salmonella typhimurium carries an altered RNA polymerase. Wild-type (c+) phage P22 displays clear plaques and a reduced lysogenization frequency on this mutant host. The cly mutants of P22 were isolated on the basis of their ability to lysogenize such mutant hosts. Two classes of regulatory events, both of which are dependent on P22 gene c1 activity, are necessary for the establishment of lysogeny in P22. The positive events culminate in repressor synthesis; the negative events cause a retardation in phage DNA synthesis. Neither the positive nor the negative events are observed in P22c+ infections of the mutant host. Both effects are found in P22cly infections of the mutant host. Observable results of both the negative and the positive events are exaggerated in P22cly infections of wild-type hosts as compared to P22c+ infections. The cly mutation apparently increases the positive and negative regulatory events so that they are detectable in the mutant host and exaggerated in wild-type hosts. Possible mechanisms that result in the high frequency of lysogenization that characterizes the cly mutation and the nature of the cly mutation are discussed.  相似文献   

12.
13.
Summary Using SDS-polyacrylamide gel electrophoresis to study the early expression of P22 genes we show that early expression of the ant-gene (imm I region) is turned off after 6–8 min, independent of the late acting mnt-repressor. A semi-clear mutant called cir5 is defective for this early ant turn-off. The mutation cir5 maps in the imm I region of P22 between genes mnt and ant. P22 cir5 mutants are defective for a repressor which acts in trans to regulate early ant synthesis. There appears to be no absolute requirement of the cir5 allele for the establishment of lysogeny. The overproduction of ant in the P22 cir5 mutant leads to a marked increase in abortive infections, killing the infected cells. The cir5-phenotype can be suppressed by an ant - mutation.  相似文献   

14.
The resistance to killing by free radicals of two mutants ofPhaffia rhodozyma was determined. Mutant 5–7 did not produce astaxanthin but produced β-carotene, while mutant 3–4 did not produce any carotenoid pigments. The resistance of mutant 5–7 was the same as that of the wild type but mutant 3–4 was rapidly killed. Carotenoid pigments increased the resistance to killing by free radicals. We investigated the effects of free radicals, generated by H2O2 and Fe2+ added to the medium, on wild-type cells and mutants ofP. rhodozyma. Unpigmented mutants of basidiomycetous yeasts (Rhodotorula spp. and others) are more susceptible to killing by UV-irradiation than the pigmented, wild-type strains. Therefore, we investigated the effect of free radicals on a similar basidiomycetous yeast,P. rhodozyma, a species of economic importance, in the biological production of astaxanthin.  相似文献   

15.
Petunia hybrida mutants, homozygous recessive for one of the genes An1, An2, An6, or An9 do not show anthocyanin synthesis in in vitro complementation experiments per se (see also Kho et al. 1977). Extracts of flowers of these mutants all provoke anthocyanin synthesis in isolated petals of an an3an3 mutant. Mutants homozygous recessive for one of the genes An1, An2, An6, or An9 and homozygous recessive for F1 accumulate dihydroflavonols in comparable amounts. The synthesis of dihydromyricetin is blocked in an1an1 mutants, which indicates a regulating effect of the gene An1 on the gene Hfl. Similar mutants, but dominant for F1, accumulate flavonols (kaempferol and quercetin) instead of dihydroflavonols. Myricetin is accumulated in minor amounts and not at all in an1an1 mutant. Furthermore, the synthesis of this flavonol is not controlled by the gene F1. The synthesis of cyanidin (derivatives) is greatly reduced when flavonols are synthesized (F1 dominant). In mutants dominant for Ht1 and Hf1 and thus able to synthesize cyanidin (derivatives) and delphinidin (derivatives), predominantly delphinidin (derivatives) are synthesized. The results indicate that kaempferol (derivatives), quercetin (derivatives), and delphinidin (derivatives) are the main endproducts of flavonoid biosynthesis in Petunia hybrida.  相似文献   

16.
17.
Summary A physical map of the ban gene of P1 and sites relevant to its regulation has been deduced from cloning of the appropriate regions of P1 wild-type and of P1 ban regulatory mutants. The cloning required the presence of P1 repressor in the cell confirming the existence of a repressible ban operon (Austin et al. 1978). Evidence for additional member(s) of that operon is presented. Of particular interest for understanding the regulation of ban are the relative positions of a binding site for the P1 repressor and of the regulatory mutations bac and crr that render ban expression constitutive. The results reveal a repressible operon-like structure of about 4 kb within the P1 EcoRI-3 fragment that comprises a c1 repressor binding site/bac additional gene(s) — crr/ban in the clockwise direction of the circular map of P1.  相似文献   

18.
Summary The virulent mutants P22 vir B vy and P22 vy mutants, both insensitive to mnt-repressor, transactivate the early genes of a P22 prophage. The transactivation of early P22 prophage genes depends strictly on the expression of gene ant (antirepressor-protein) by the superinfecting P22 mutant and therefore occurs by derepression.  相似文献   

19.
Finding the T-cell antigen receptor: past attempts and future promise   总被引:1,自引:0,他引:1  
M Kronenberg  E Kraig  L Hood 《Cell》1983,34(2):327-329
  相似文献   

20.
Chinese hamster ovary cells express a wide variety of glycoproteins with Mr ranging from 15,000 to 200,000 dalton and higher. Glycosylation of these proteins was much less in cAMP-dependent protein kinase (PKA)-deficient mutants which expressed either (i) a defective C-subunit with altered substrate specificity and having no detectable type II kinase (mutant 10215); or (ii) an altered RI subunit and having no detectable type II kinase (mutant 10248); or (iii) exhibited the lowest level of total kinase with no detectable type I kinase but having a small amount of type II kinase (mutant 10260). Addition of 8Br-cAMP enhanced protein glycosylation index in wild type cells 10001 by 120% but only 7 to 23% in the mutant cells. The rate of lipid-linked oligosaccharide (LLO) biosynthesis was linear for 1 h in all cell types, but the total amount of LLO expressed was much less in PKA-deficient mutants. Pulse-chase experiments indicated that the t1/2 for LLO turnover was also twice as high in PKA-deficient cells as in the wild type. Size exclusion chromatography of the mild-acid released oligosaccharide confirmed that both wild type and the mutant cells synthesized Glc3Man9GlcNAc2-PP-Dol as the most predominating species with no accumulation of Man5GlcNAc2-PP-Dol in the mutants. Kinetic studies exhibited a reduced mannosylphosphodolichol synthase (DPMS) activity in mutant cells with a Km for GDP-mannose 160 to 400% higher than that of the wild type. In addition, the kcat for DPMS was also reduced 2 to 4-fold in these mutant cells. Exogenously added Dol-P failed to rescue the kcat for DPMS in CHO cell mutants; however, in vitro protein phosphorylation with a cAMP-dependent protein kinase restored their kinetic activity to the level of the wild type. Published in 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号