首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prostacyclin (PGI2) infused at a rate of 350 ng/kg/min significantly increased survival time in rats subjected to Noble-Collip drug trauma from 2.7 +/- 0.3 to 4.6 +/- 0.2 h (p less than 0.01) compared with traumatized rats given only the vehicle (Tris buffer). Moreover, PGI2 treated rats exhibited significantly lower circulating cathepsin D and myocardial depressant factor (MDF) activities, indicative of lower lysosomal disruption and lower toxic factor formation. PGI2 induced vasodilation in rats as well as these other protective effects.  相似文献   

2.
We studied the effects of LY-163443, a novel selective receptor antagonist of LTD4 and LTE4, in splanchic artery occlusion (SAO) shock. LY-163443 antagonized the bronchoconstrictor effect of LTD4 given intravenously to anesthetized rats. Anesthetized rats subjected to total occlusion of the superior mesenteric and the celiac arteries for 40 minutes developed a severe shock state usually resulting in a fatal outcome within two hours after release of the occlusion. SAO shock rats pre-treated with LY-163443 before the occlusion of the splanchnic arteries maintained post-release MABP at significantly higher values compared to rats receiving either the vehicle or LY-163443 as a post-treatment 15 min after occlusion (final MABP 96 +/- 8 vs 51 +/- 1, p less than 0.01 and 53 +/- 3, p less than 0.01, respectively). Pre-treatment with LY-163443 attenuated the release of the lysosomal hydrolase, cathepsin D (p less than 0.01 from vehicle and p less than 0.05 from post-treatment groups), and the plasma accumulation of free amino-nitrogen compounds (p less than 0.05 from vehicle). Furthermore, the plasma activity of a myocardial depressant factor (MDF) was significantly lower in the pre-treatment group than in the vehicle group (27 +/- 3 vs 51 +/- 6 U/ml, p less than 0.01). SAO shock rats pretreated with LY-163443 also exhibited significantly higher survival rates (p less than 0.01 from vehicle and post-treatment groups), and prolonged survival times (p less than 0.01 from vehicle and post-treatment groups).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the effects of human superoxide dismutase (h-SOD) in splanchnic artery occlusion (SAO) shock. Pentobarbital anesthetized rats subjected to total occlusion of the superior mesenteric and the celiac arteries for 40 min developed a severe shock state usually resulting in a fatal outcome within 20 min after the release of the occlusion. h-SOD (10 mg/kg) was infused intravenously starting at reperfusion and lasting for 10 min. SAO shock rats treated with h-SOD maintained postreperfusion MABP at significantly higher values compared to rats receiving the vehicle (final MABP 84 +/- 6 vs 46 +/- 1 mm Hg, P less than 0.01, respectively). Treatment with h-SOD attenuated the plasma accumulation of free amino-nitrogen compounds (P less than 0.01 from vehicle) as well as the activity of the lysosomal protease cathepsin D (P less than 0.05 from vehicle). Furthermore, the plasma activity of a myocardial depressant factor was significantly lower in h-SOD-treated rats than in SAO rats receiving only the vehicle (27 +/- 1 vs 64 +/- 3 U/ml, P less than 0.01). SAO shock rats treated with h-SOD also exhibited a significantly higher survival rate than the SAO shock +/- vehicle group (88% vs 11%, P less than 0.01, respectively). These results support the role of oxygen-derived radicals in the pathophysiology of SAO shock, and indicate that h-SOD effectively ameliorates the deleterious effects of oxygen radicals in this severe model of ischemia and reperfusion.  相似文献   

4.
C E Hock  A M Lefer 《Peptides》1985,6(3):547-553
Thyrotropin releasing hormone (TRH) has been reported to reverse hypotension induced by a variety of agents and thus it has been suggested to be of therapeutic value in circulatory shock. We have investigated TRH (2 mg/kg bolus plus 2 mg/kg/hr infusion) in both hemorrhagic (cats) and traumatic shock (rats). TRH induced a pressor effect of 23 +/- 8 mm Hg (p less than 0.05) in cats and 19 +/- 3 mm Hg (p less than 0.01) in rats during hypotension. However, this transient (10-15 min) response did not result in any sustained improvement in the cardiovascular status of the animals in either shock model when compared to the vehicle. In addition, TRH did not attenuate any of the biochemical indices of the severity of the shock state (i.e., plasma amino-nitrogen concentrations, or plasma cathepsin D and MDF activities) nor did it improve survival time in traumatic shock (2.8 +/- 0.4 vs. 2.0 +/- 0.2 hours). Furthermore, TRH resulted in a significant blunting of the maximum post-reinfusion superior mesenteric artery flow and enhanced beta-glucuronidase release from liver lysosomal preparations in vitro. These potentially detrimental effects in conjunction with the lack of any overt protective effect under the conditions existing in these two shock models, do not provide evidence that TRH is beneficial as a therapeutic agent in circulatory shock.  相似文献   

5.
We studied the effects of hyperbaric oxygen in a severe model of circulatory shock induced by occlusion and reperfusion of major splanchnic arteries (splanchnic artery occlusion (SAO) shock). Pentobarbital-anesthetized rats subjected to total occlusion of the superior mesenteric and the celiac arteries for 40 min developed a severe shock state, resulting in a uniformly fatal outcome after release of the occlusion. Exposure to hyperbaric oxygen at 2 ATA (atmosphere absolute) (1 ATA = 0.1 MPa) was initiated immediately after reperfusion. SAO shock rats exposed to hyperbaric oxygen maintained mean arterial blood pressure at significantly higher values throughout the postreperfusion period compared with untreated SAO shock rats (p less than 0.01), with final mean arterial blood pressures of 88 +/- 9 and 51 +/- 4 mmHg, respectively. Treatment with hyperbaric oxygen attenuated the increase in plasma activities of the lysosomal hydrolase cathepsin D (p less than 0.05), and diminished the increase of hematocrit (p less than 0.01 from untreated shock rats). Splanchnic occlusion shock rats treated with hyperbaric oxygen also exhibited a significantly higher survival rate than the untreated shock group (77 vs. 0%, respectively; p less than 0.01). Our results suggest that the beneficial effects of exposure to hyperbaric oxygen immediately after reperfusion of the splanchnic region outweigh its possible deleterious effect.  相似文献   

6.
Prostacyclin (PGI2) infused at a rate of 350 ng/kg/min significantly increased survival time in rats subjected to Noble-Collip drum trauma from 2.7±0.3 to 4.6±0.2 h (p<0.01) compared with traumatized rats given only the vehicle (Tris buffer). Moreover, PGI2 treated rats exhibited significantly lower circulating cathepsin D and myocardial depressant factor (MDF) activities, indicative of lower lysosomal disruption and lower toxic factor formation. PGI2 induced vasodilation in rats as well as these other protective effects.  相似文献   

7.
Diets enriched with omega-3 unsaturated fatty acids are associated with decreased hypercholesterolemia and decreased risk of ischemic and atherosclerotic diseases. We studied the acute intravascular effects of some of these unsaturated fatty acids (i.e., eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) along with omega-6 unsaturated fatty acids, (i.e., linoleic and linolenic acid) in splanchnic artery occlusion (SAO) shock in rats. Anesthetized rats subjected to total occlusion of the celiac and superior mesenteric arteries for 40 minutes followed by reperfusion usually resulted in a fatal outcome 90-120 minutes after releasing the clamps. SAO shock rats treated with the omega-3 unsaturated fatty acid, EPA, exhibited an improved survival time and rate (p less than 0.05 from vehicle) compared to those receiving only vehicle (i.e., 50% ethanol). EPA and DHA treated SAO rats also exhibited lower plasma activities of the lysosomal protease, cathepsin D, free amino-nitrogen compounds, and the cardiotoxic peptide, myocardial depressant factor. These results indicate that omega-3 unsaturated fatty acids, especially EPA, have some acute beneficial effects in SAO shock in rats.  相似文献   

8.
We have used three selective inhibitors of arachidonic acid metabolism in order to investigate the role of lipoxygenase metabolites in the pathogenesis of traumatic shock (LD90). The following inhibitors were used: CGS-5391B (2.5 mg/kg), a cyclooxygenase and lipoxygenase inhibitor, CGS-5677 (2.0 mg/kg), a selective lipoxygenase inhibitor, and U-60, 257 (0.3 mg/kg), a putative inhibitor of glutathione-s-transferase. These inhibitors did not alter arterial blood pressure or heart rate when given to sham shock rats. The traumatic shock model was characterized by a 4.5-fold increase in plasma cathepsin D activity, a 4-fold increase in plasma myocardial depressant factor (MDF) activity, and a mean survival time of 1.5 ± 0.2 h. Only the dual inhibitor significantly blunted the accumulation of cathepsin D in the plasma (7.5 ± 0.8 vs 11.3 ± 0.8 U/ml, p<0.01). However, all three inhibitors significantly suppressed plasma MDF accumulation by 50–60%: CGS-5391B, CGS-5677, and U-60,2257 (p<0.01). Moreover, these three agents significantly improved survival time in traumatic shock. The increased survival time and reduced MDF activity afforded by these inhibitors suggest a significant role for lipoxygenase metabolites, particularly LTC4 and LTD4, in the pathogenesis of traumatic shock.  相似文献   

9.
Nimodipine, a new calcium channel blocker, was found to prolong survival in a severely lethal form of traumatic shock in rats. Nimodipine, at infusion rates of 50 μg/kg/h also significantly limited the increase in circulating myocardial depressant factor (MDF) without significantly preventing the accumulation of the lysosomal protease, cathepsin D in the blood. Lower infusion rates were ineffective. Nimodipine did not stabilize lysosomal membranes directly in liver lysosomal suspensions, but was effective in preventing proteolysis in pancreatic homogenates. Nimodipine potentially prevents MDF formation by inhibiting proteases and probably by splanchnic vasodilation. Calcium channel blockers may be useful agents in the therapeutics of traumatic shock if given soon after the onset of the trauma.  相似文献   

10.
1. The pH- and activator-dependence of toad plasma cathepsin activity assayed by hemoglobin digestion was characteristic of cathepsins B1 and D. 2. Dehydration, even to the point of death, did not produce a significant elevation of plasma cathepsin activity over controls. 3. Toads were remarkably resistant to the effects of splanchnic artery ligation, which also did not produce significantly higher plasma cathepsin levels. 4. Cardiac depression via the production of a myocardial depressant factor by cathepsins does not appear to be an important factor in dehydrational death in toads.  相似文献   

11.
Hemorrhagic shock causes myocardial contractile depression. Although this myocardial disorder is associated with increased expression of tumor necrosis factor-alpha (TNF-alpha), the role of TNF-alpha as a myocardial depressant factor in hemorrhagic shock remains to be determined. Moreover, it is unclear which TNF-alpha receptor mediates the myocardial depressive effects of TNF-alpha. Toll-like receptor 4 (TLR4) regulates cellular expression of proinflammatory mediators following lipopolysaccharide stimulation and may be involved in the tissue inflammatory response to injury. The contribution of TLR4 signaling to tissue TNF-alpha response to hemorrhagic shock and TLR4's role in myocardial depression during hemorrhagic shock are presently unknown. We examined the relationship of TNF-alpha production to myocardial depression in a mouse model of nonresuscitated hemorrhagic shock, assessed the influence of TLR4 mutation, resulting in defective signaling, on TNF-alpha production and myocardial depression, and determined the roles of TNF-alpha and TNF-alpha receptors in myocardial depression using a gene knockout (KO) approach. Hemorrhagic shock resulted in increased plasma and myocardial TNF-alpha (4.9- and 4.5-fold, respectively) at 30 min and induced myocardial contractile depression at 4 h. TLR4 mutation abolished the TNF-alpha response and attenuated myocardial depression (left ventricular developed pressure of 43.0 +/- 6.2 mmHg in TLR4 mutant vs. 30.0 +/- 3.6 mmHg in wild type, P < 0.05). TNF-alpha KO also attenuated myocardial depression in hemorrhagic shock, and the p55 receptor KO, but not the p75 receptor KO, mimicked the effect of TNF-alpha KO. The results suggest that TLR4 plays a novel role in signaling to the TNF-alpha response during hemorrhagic shock and that TNF-alpha through the p55 receptor activates a pathway leading to myocardial depression. Thus TLR4 and the p55 TNF-alpha receptor represent therapeutic targets for preservation of cardiac mechanical function during hemorrhagic shock.  相似文献   

12.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The immediate (1 day, D1) and late (90 days, D90) effects of unilateral nephrectomy on contralateral renal hemodynamics, and the renal handling of electrolytes and water were investigated in the whole animal. The immediate and late ability of the remnant kidney to autoregulate perfusate flow and glomerular filtration rate (GFR) was studied in the isolated perfused kidney of the rat. In the whole animal, in D1 rats as compared to controls, GFR calculated for a single kidney increased from 0.85 +/- 0.3 to 1.1 +/- 0.2 ml/min (p less than 0.05). In D90 rats GFR increased further and was similar to prenephrectomy GFR (1.4 +/- 0.5 vs. 1.7 +/- 0.5 ml/min, p NS). Urinary prostanoid excretion in 24 h, calculated for one kidney, increased by 50-500% in D1 rats, but returned to prenephrectomy values in D90 rats. In the isolated perfused kidney, decreasing perfusion pressure (PP) from 100 to 70 mmHg did not change the renal vascular resistance (RVR) in control and D90 kidneys, but in D1 kidneys RVR decreased from 8.6 +/- 1.3 to 7 +/- 1.3 mm Hg/ml/min (p less than 0.05). In D90 kidneys RVR was significantly lower as compared to control and D1 kidneys at all perfusion pressures. Decreasing PP from 100 to 70 mm Hg resulted in a significant decrease in perfusion flow in control, D1 and D90 kidneys, while with the increase in PP from 100 to 130 mm Hg the perfusion flow increased significantly in all three kidney groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have previously suggested that mechanisms other than reduced lipoprotein lipase (LPL) activity might contribute to the defect in plasma removal of very low density lipoprotein (VLDL)-triglyceride (TG) observed in insulin-deficient rats. To further evaluate this phenomenon, removal rates of TG in nonfractionated plasma, as well as in isolated lipoprotein fractions obtained from insulin-deficient and control rats, were compared in a new, sensitive in vivo bioassay system (estradiol-treated male rats with a consistently low endogenous VLDL-TG pool). Removal of TG in nonfractionated plasma from insulin-deficient rats was slower than that of control rats: 3.0 +/- 0.3 vs 1.6 +/- 0.2 min (P less than 0.001). No difference was found in removal rate of isolated VLDL-TG (2.5 +/- 0.3 vs 2.6 +/- 0.4 min), or in removal rates of TG carried in other lipoprotein fractions. We next determined the effect of injection into normal rats of aliquots of dialyzed lipoprotein-free (D greater than 1.215) plasma from insulin-deficient and control rats on the removal rate of normal VLDL-TG, and found that lipoprotein-free plasma from insulin-deficient rats significantly (P less than 0.01) prolonged removal of normal VLDL-TG (4.3 +/- 0.4 to 6.8 +/- 0.7 min). This same fraction did not interfere with the in vitro hydrolysis of normal VLDL-TG by post-heparin LPL. Thus, a factor in the D greater than 1.215 plasma fraction of insulin-deficient rats is present which interferes with the rate of removal of TG from plasma, unrelated to inhibition of LPL activity.  相似文献   

15.
The relationship between hydroxyl radical (OH*) generation in the zone of ischemia/reperfusion and the size of infarction formed was investigated in 18-22-week-old anaesthetized male SHRSP and Wistar rats using a myocardial microdialysis technique. The marker of OH* generation, 2,3-dihydroxybenzoic acid (2,3-DHBA), was analyzed in dialyzates by high performance liquid chromatography with electrochemical detection. Myocardial ischemia was induced by ligation of the descending branch of the left main coronary artery for 30 min. The mean value of basal 2,3-DHBA level in the dialyzate samples from SHRSP (243 +/- 21 pg for 30 min) was significantly higher than that from Wistar rats (91 +/- 4 pg for 30 min, p < 0.0002); it positively correlated with left ventricular hypertrophy (r = 0.806; p < 0.05). During reperfusion total 2,3-DHBA output was 1.8-fold higher in SHRSP than in Wistar rats (659 +/- 60 pg versus 364 +/- 66 pg for 60 min, respectively, p < 0.0002). At the same time, 2,3-DHBA increase above the basal level was the same in Wistar and SHRSP rats (181 +/- 25 and 172 +/- 36 pg for 60 min, respectively). The infarct size in SHRSP (45.4 +/- 4.3%) was significantly higher (p < 0.05) than in Wistar rats (32.8 +/- 3.3%). There was a significant positive correlation between basal level of 2,3-DHBA and total reperfusion 2,3-DHBA content in SHRSP (r = 0.752; p < 0.05). Thus, data obtained clearly indicate that the hypertrophied myocardium of SHRSP was less tolerant to ischemia/reperfusion than that of Wistar rats due to chronically increased OH* production and enhanced total OH* output during reperfusion. Greater myocardial damage in SHRSP than in Wistar rats following the equal increase in OH* production above the basal level suggests the existence of deficit of the antioxidant defense in the hypertrophied myocardium.  相似文献   

16.
We have examined the activity and distribution of cathepsin D (EC 3.4.23.5), a major renal lysosomal endoproteinase, in the various anatomical and functional areas of normal rat kidney. Cathepsin D-like activities (delta A280/h per mg of protein) in normal rat tissues were: cortex, 0.78 +/- 0.05, n = 37; medulla, 0.62 +/- 0.03, n = 12; papilla, 0.63 +/- 0.04, n = 12; tubules, 0.74 +/- 0.04, n = 28; glomeruli, 0.59 +/- 0.03, n = 28; and liver, 0.41 +/- 0.02, n = 28. Enzyme activity was maximal at pH 3.0-3.5 and inhibited more than 90% by pepstatin (6.7 micrograms/ml), suggesting that the enzyme is cathepsin D. In subsequent experiments we measured cathepsin D-like activity in cortex, tubules and glomeruli isolated from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Treated animals (15 mg of PAN/100g body wt., intraperitoneally) developed proteinuria beginning 4 days after injection and exceeding 900 mg/24h on day 9. In two separate experiments involving 52 animals we observed a significant increase in cathepsin D-like activity in cortex (+82.7%), tubules (+109.6%) and glomeruli (+54.7%) isolated from PAN-treated rats killed during marked proteinuria (day 9, mean total urinary protein excretion: 937 +/- 94 mg/24h). This increase was observed whether the activity was expressed per mg of DNA or per mg of protein. Increased cathepsin D-like activity was first observed in cortex and tubules coincident with the onset of proteinurea (day 4, mean total urinary protein excretion: 112 +/- 23 mg/24h). In contrast with the significant elevation of renal cathepsin D-like activity, the activity (nmol/h per mg of protein) of alpha-L-fucosidase (EC 3.2.1.51), a non-proteolytic enzyme, was markedly decreased in the identical samples used for the measurement of cathepsin D-like activity: cortex (-46.4%); tubules (-46.1%); and glomeruli (-38.5%). In addition to changes in renal enzyme activities, PAN-treated rats excreted large amounts of cathepsin D-like activity in their urine (beginning on day 3) compared with nearly undetectable cathepsin D-like activity in the urine from control rats. The significant increases in glomerular and tubular cathepsin D activity may reflect an important role for this enzyme in the pathophysiology associated with PAN-induced nephrotic syndrome.  相似文献   

17.
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319  相似文献   

18.
We investigated the effects of therapeutic hypothermia (30 degrees C) on alterations in constitutive (cNOS) and inducible (iNOS) nitric oxide synthase activities following traumatic brain injury (TBI). Male Sprague-Dawley rats were anesthetized with 0.5% halothane and underwent moderate (1.8-2.2 atm) parasagittal fluid-percussion (F-P) brain injury. In normothermic rats (37 degrees C) the enzymatic activity of cNOS was significantly increased at 5 min within the injured cerebral cortex compared with contralateral values (286.5+/-68.9% of contralateral value; mean+/-SEM). This rise in nitric oxide synthase activity was significantly reduced with pretraumatic hypothermia (138.8+/-17% of contralateral value; p < 0.05). At 3 and 7 days after normothermic TBI the enzymatic activity of cNOS was decreased significantly (30+/-8.4 and 28.6+/-20.9% of contralateral value, respectively; p < 0.05). However, immediate posttraumatic hypothermia (3 h at 30 degrees C) preserved cNOS activity at 3 and 7 days (69.5+/-23.3 and 78.6+/-7.6% of contralateral value, respectively; mean+/-SEM; p < 0.05). Posttraumatic hypothermia also significantly reduced iNOS activity at 7 days compared with normothermic rats (0.021+/-0.06 and 0.23+/-0.06 pmol/mg of protein/min, respectively; p < 0.05). The present results indicate that hypothermia (a) decreases early cNOS activation after TBI, (b) preserves cNOS activity at later periods, and (c) prevents the delayed induction of iNOS. Temperature-dependent alterations in cNOS and iNOS enzymatic activities may participate in the neuroprotective effect of hypothermia in this TBI model.  相似文献   

19.
We have utilized specific, irreversible inhibitors of cysteine proteinases to examine the role of renal cathepsin B and cathepsin L in the proteinuria which occurs in an experimental model of human glomerular disease. Administration of trans-epoxysuccinyl-L-leucylamido-(3-methyl)butane (Ep475) a specific, irreversible inhibitor of cysteine proteinases, including cathepsins B and L, significantly reduced proteinuria in rats with experimentally induced, neutrophil-independent, anti-GBM antibody disease (controls: 10 +/- 1 mg/24 h, N = 8; anti-GBM antibody disease: 203 +/- 30 mg/24 h, N = 8; anti-GBM antibody disease + Ep475: 112 +/- 13 mg/24 h, mean +/- SEM, N = 6, P less than 0.05). There was a marked reduction in the activity of both cathepsin B and cathepsin L in renal cortices obtained from Ep475-treated rats compared to either saline-treated controls or rats treated with anti-GBM IgG only. Administration of Z-Phe-Tyr(O-t-butyl)CHN2, a specific, irreversible cysteine proteinase inhibitor with a high degree of selectivity toward cathepsin L, also caused a reduction in anti-GBM antibody-induced proteinuria (90 +/- 18 mg/24 h, N = 6, P less than 0.05). This reduction in proteinuria was accompanied by a marked decrease (-84%) in the specific activity of renal cortical cathepsin L in Z-Phe-Tyr(O-t-butyl)CHN2-treated rats. However, cathepsin B activity was unchanged. There was no significant change in the renal anti-GBM antibody uptake, plasma urea nitrogen, or plasma creatinine values in the Z-Phe-Tyr(O-t-butyl)CHN2-treated rats compared to rats treated with anti-GBM IgG only or saline-treated controls. These data document the ability of cysteine proteinase inhibitors to decrease the proteinuria which occurs in a neutrophil-independent model of human anti-GBM antibody disease and suggest an important role for cathepsin L in the pathophysiology of the proteinuria which occurs in this model.  相似文献   

20.
Portal-systemic blood shunting is often accompanied by hyperglucagonemia and hemodynamic changes. To determine this causal relation, splanchnic and systemic hemodynamics (radioactive microspheres) and plasma glucagon levels (radioimmunoassay) were assessed in conditions of total portal-systemic shunting in portacaval-shunted (PCS) rats and in sham-operated (SO) normal rats. To compare these results, another hemodynamic study was undertaken basally and during glucagon infusion in nonoperated normal rats. PCS rats showed a threefold greater plasma glucagon concentration than SO animals (924 +/- 134 vs. 309 +/- 18 pg/ml, p less than 0.01), and they developed a hyperdynamic splanchnic circulation with higher portal venous inflow than SO rats (8.29 +/- 1.1 vs. 5.09 +/- 0.4 ml/min/100 g, p less than 0.05). Infusion of a pharmacological dose of glucagon in normal rats increased portal venous inflow (from 4.92 +/- 0.33 to 6.24 +/- 0.48 ml/min/100 g, p less than 0.05) so as to imply this hormone in the development of the hyperdynamic splanchnic circulation in conditions of portal-systemic shunting. However, the discrepancies in systemic hemodynamics between PCS and glucagon-infused rats may be a result of the different plasma glucagon levels reached in the two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号