首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human gene for catechol O-methyltransferase (COMT) contains a common polymorphism that results in substitution of methionine (M) for valine (V) at residue 108 of the soluble form of the protein. While the two proteins have similar kinetic properties, 108M COMT loses activity more rapidly than 108V COMT at 37 degrees C. The cosubstrate S-adenosylmethionine (SAM) stabilizes the activity of 108M COMT at 40 degrees C. The 108M allele has been associated with increased risk for breast cancer, obsessive-compulsive disorder, and aggressive and highly antisocial manifestations of schizophrenia. In the current work, we have constructed homology models for both human COMT polymorphs and performed molecular dynamics simulations of these models at 25, 37, and 50 degrees C to explore the structural consequences of the 108V/M polymorphism. The simulations indicated that replacing valine with the larger methionine residue led to greater solvent exposure of residue 108 and heightened packing interactions between M108 and helices alpha2, alpha4 (especially with R78), and alpha5. These altered packing interactions propagated subtle changes between the polymorphic site and the active site 16 A away, leading to a loosening of the active site. At physiological temperature, 108M COMT sampled a larger distribution of conformations than 108V. 108M COMT was more prone to active-site distortion and had greater overall, and SAM binding site, solvent accessibility than 108V COMT at 37 degrees C. Similar structural perturbations were observed in the 108V protein only at 50 degrees C. Addition of SAM tightened up the cosubstrate pocket in both proteins and prevented the altered packing at the polymorphic site in 108M COMT.  相似文献   

2.
Catechol O-methyltransferase (COMT) plays an important role in the inactivation of biologically active and toxic catechols. This enzyme is genetically polymorphic with a wild type and a variant form. Numerous epidemiological studies have shown that the variant form is associated with an increased risk of developing estrogen-associated cancers and a wide spectrum of mental disorders. There are seven cysteine residues in human S-COMT, all of which exist as free thiols and are susceptible to electrophilic attack and/or oxidative damage leading to enzyme inactivation. Here, the seven cysteine residues were systematically replaced by alanine residues by means of site-directed mutagenesis. The native forms and cysteine/alanine mutants were assayed for enzymatic activity, thermal stability, methylation regioselectivity, and reactivity of cysteine residues to thiol reagent. Our data showed that although there is only one encoding base difference between these two COMT forms, this difference might induce structural changes in the local area surrounding some cysteine residues, which might further contribute to the different roles they might play in enzymatic activity, and to the different susceptibility to enzyme inactivation.  相似文献   

3.
A soluble (100,000 x g supernatant) methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to catechols was present in cell extracts of Streptomyces griseus. A simple, general, and rapid catechol-based assay method was devised for enzyme purification and characterization. The enzyme was purified 141-fold by precipitation with ammonium sulfate and successive chromatography over columns of DEAE-cellulose, DEAE-Sepharose, and Sephacryl S-200. The purified cytoplasmic enzyme required 10 mM magnesium for maximal activity and was catalytically optimal at pH 7. 5 and 35 degrees C. The methyltransferase had an apparent molecular mass of 36 kDa for both the native and denatured protein, with a pI of 4.4. Novel N-terminal and internal amino acid sequences were determined as DFVLDNEGNPLENNGGYXYI and RPDFXLEPPYTGPXKARIIRYFY, respectively. For this enzyme, the K(m) for 6,7-dihydroxycoumarin was 500 +/- 21.5 microM, and that for S-adenosyl-L-methionine was 600 +/- 32.5 microM. Catechol, caffeic acid, and 4-nitrocatechol were methyltransferase substrates. Homocysteine was a competitive inhibitor of S-adenosyl-L-methionine, with a K(i) of 224 +/- 20.6 microM. Sinefungin and S-adenosylhomocysteine inhibited methylation, and the enzyme was inactivated by Hg(2+), p-chloromercuribenzoic acid, and N-ethylmaleimide.  相似文献   

4.
5.
An in vitro system using an enzyme extract containing ATP:L-methionine S-adenosyltransferase from Escherichia coli MRE 600 cells was used to synthesize 8-azido-S-adenosyl-L-methionine from methionine and 8-azidoadenosine 5'-triphosphate. In the absence of ultraviolet light and analog can serve as a methyl donor for porcine catechol O-methyltransferase. Photolysis of 8-azido-S-adenosyl[35S]methionine in the presence of catechol O-methyltransferase results in covalent incorporation. Addition of either authentic S-adenosylmethionine or S-adenosylhomocysteine, but not adenosine 5'-monophosphate, to the photolysis reaction mixture eliminates the photoincorporation. These results indicate that the incorporation is occurring at the S-adenosylmethionine binding site in the catechol O-methyltransferase.  相似文献   

6.
7.
8.
Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine (SAM) to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT) as a model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.  相似文献   

9.
10.
J Veser 《Journal of bacteriology》1987,169(8):3696-3700
The Kms for esculetin and S-adenosyl-L-methionine for catechol O-methyltransferase from the yeast Candida tropicalis were 6.2 and 40 microM, respectively. S-Adenosyl-L-homocysteine was a very potent competitive inhibitor with respect to S-adenosyl-L-methionine, with a Ki of 6.9 microM. Of the catechol-related inhibitors, purpurogallin, with a Ki of 0.07 microM, showed the greatest inhibitory effect. Sulfhydryl group-blocking reagents, such as thiol-oxidizing 2-iodosobenzoic acid and mercaptide-forming p-chloromercuribenzoic acid, provided evidence for sulfhydryl groups in the active site of the enzyme. Yeast catechol O-methyltransferase is a metal-dependent enzyme and requires Mg2+ for full activity. Zn2+ and Mn2+ but not Ca2+ were able to substitute for Mg2+. Mn2+ showed optimal enzyme activation at concentrations 50- to 100-fold lower than those of Mg2+.  相似文献   

11.
The mature HIV-1 protease (PR) bearing the L76V drug resistance mutation (PR(L76V)) is significantly less stable, with a >7-fold higher dimer dissociation constant (K(d)) of 71 ± 24 nM and twice the sensitivity to urea denaturation (UC(50) = 0.85 M) relative to those of PR. Differential scanning calorimetry showed decreases in T(m) of 12 °C for PR(L76V) in the absence of inhibitors and 5-7 °C in the presence of inhibitors darunavir (DRV), saquinavir (SQV), and lopinavir (LPV), relative to that of PR. Isothermal titration calorimetry gave a ligand dissociation constant of 0.8 nM for DRV, ~160-fold higher than that of PR, consistent with DRV resistance. Crystal structures of PR(L76V) in complexes with DRV and SQV were determined at resolutions of 1.45-1.46 ?. Compared to the corresponding PR complexes, the mutated Val76 lacks hydrophobic interactions with Asp30, Lys45, Ile47, and Thr74 and exhibits closer interactions with Val32 and Val56. The bound DRV lacks one hydrogen bond with the main chain of Asp30 in PR(L76V) relative to PR, possibly accounting for the resistance to DRV. SQV shows slightly improved polar interactions with PR(L76V) compared to those with PR. Although the L76V mutation significantly slows the N-terminal autoprocessing of the precursor TFR-PR(L76V) to give rise to the mature PR(L76V), the coselected M46I mutation counteracts the effect by enhancing this rate but renders the TFR-PR(M46I/L76V) precursor less responsive to inhibition by 6 μM LPV while preserving inhibition by SQV and DRV. The correlation of lowered stability, higher K(d), and impaired autoprocessing with reduced internal hydrophobic contacts suggests a novel molecular mechanism for drug resistance.  相似文献   

12.
Selectivity of catechol O-methyltransferase has been examined for the three ring-fluorinated norepinephrines to elucidate the role of acidity of the phenolic groups in their methylation. Substitution of fluorine at the 5-position of norepinephrine reverses the selectivity of catechol O-methyltransferase so that p-O-methylation predominates. The 5-fluoro substituent also causes the pKa of the p-hydroxyl group to decrease substantially. In contrast, 2- and 6-fluoronorepinephrines are methylated predominantly at the m-hydroxyl group. These results suggest that acidity of a phenolic group can play an important role in its ability to be methylated by catechol O-methyltransferase. Percentages of p-O-methylation of norepinephrine and its fluorinated derivatives increase with pH. This relative increase in p-O-methylation appears to accompany ionization of a group with pKa of 8.6, 7.7, 7.9, and 8.4 for norepinephrine and its 2-, 5-, and 6-fluoro derivative, respectively. These pKa values are the same as or similar to the pKa values of a phenolic hydroxyl group of these substrates. 3,4-Dihydroxybenzyl alcohol and its 5-fluoro derivative are O-methylated by catechol O-methyltransferase to form p- and m-O-methyl products in approximately 1:1 and 4:1 ratios, respectively, at all pH values. Based on the above results, a catechol-binding site model for catechol O-methyltransferase is proposed in which the two phenolic hydroxyl groups of catechol substrates are postulated to be approximately equally spaced from the methyl group of the cosubstrate S-adenosylmethionine.  相似文献   

13.
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β?structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme.  相似文献   

14.
15.
We have identified a mutation of human gamma-interferon (IFN gamma) causing a temperature-sensitive phenotype. We used a randomized oligonucleotide to mutagenize a synthetic human IFN gamma gene, then screened the resulting mutants produced in Escherichia coli for proteins with altered biological activity. One mutant protein selected for detailed characterization exhibited less than 0.3% of the specific biological activity of native IFN gamma in an antiviral activity assay performed at 37 degrees C. However, the protein bound the human IFN gamma receptor with native efficiency at 4 degrees C. Sequencing the plasmid DNA encoding this protein showed that the mutation changed the lysine residue at amino acid 43 to glutamic acid (IFN gamma/K43E). Site-specific mutagenesis at amino acid 43 showed that this protein's phenotype resulted from positioning a negative charge at position 43. Structural characterization of IFN gamma/K43E using CD demonstrated that the protein had native conformation at 25 degrees C, but assumed an altered conformation at 37 degrees C. IFN gamma/K43E in this altered conformation bound poorly to the IFN gamma receptor at 37 degrees C, providing a rationale for the mutant's decreased antiviral activity.  相似文献   

16.
17.
In order to investigate the pH dependence of catechol O-methyltransferase (S-adenosyl-L-methionine:catechol O-methyltransferase, EC 2.1.1.6), kinetic parameters have been determined for the highly purified enzyme from pig liver over the pH range 6.75-8.20 using the substrates S-adenosylmethionine (AdoMet) and 3,4-dihydroxyphenylacetic acid (DOPAC). The Km for AdoMet was found to be invariant with pH while the Km for DOPAC decreased sharply with increasing pH. The group responsible for the latter has a pK of approx. 7.1. The logarithmic (Dixon) plot of Km against pH for both substrates and that of Vmax/Km against pH for DOPAC mirror the kinetic behaviour revealed by linear plots. However, for other parameters, linear graphs indicate peaks too narrow to be explicable by a simple kinetic mechanism, whereas logarithmic plots of these parameters produce graphs apparently not reflecting this behaviour. We conclude that these results are not the products of random error or artefactual data analysis but are too complex to be explicable by a simple model of kinetic behaviour. Possible explanations (adherence of catechol O-methyltransferase to a higher-order mechanism or a dual mode of substrate binding) are advanced.  相似文献   

18.
19.
Rat catechol O-methyltransferase cDNA was introduced into an E. coli expression vector pKEX14, which utilizes the inducible T7 promoter. Active and soluble recombinant catechol O-methyltransferase was produced in bacteria and purified to electrophoretic homogeneity by chromatographic procedures. The purified enzyme has been crystallized by the method of vapor diffusion using polyethylene glycol as precipitant. The space group is P3(1)21 or P3(2)21 with a = b = 51.3 A and c = 168.5 A and one molecule in the asymmetric unit. The crystals diffract beyond 3.2 A and are suitable for three-dimensional X-ray structure determination.  相似文献   

20.
A new assay of catechol O-methyltransferase (EC 2.1.1.6) is described by determination of the m- and p-O-methylated products of 3,4-dihydroxybenzoic acid. The method involves DEAE-Sephadex A-25 chromatography and reversed-phase high-performance liquid chromatography on a LiChrosorb 5 RP 18 column. The liquid chromatographic solvent system consisted of 0.05 m acetic acid in methanol:water (1:4, vv), pH 3,2. meta/para ratios of O-methylation are easily obtained by this method. Dimethylation has not been observed with a partially purified enzyme preparation from rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号